Chapitre 10 : Suites numériques – 2e partie Variations et notion de limite

I Suite croissante, suite décroissante

Définition

Soit (u_n) une suite de nombres réels. On dit que :

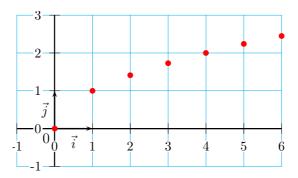
- la suite (u_n) est croissantesi pour tout entier $n, u_{n+1} \ge u_n$,
- (u_n) est décroissante les pour tout entier $n, u_{n+1} \leq u_n$,
- (u_n) est constante si pour tout entier n, $u_{n+1} = u_n$.
- (u_n) est monotone si elle est croissante ou décroissante.

Remarque (suite strictement croissante, ou strictement décroissante)

En remplaçant les inégalités larges par des inégalités strictes, on définit une suite (u_n) strictement croissante, strictement décroissante :

- (u_n) est strictement croissante si pour tout entier $n, u_{n+1} > u_n$.
- (u_n) est strictement décroissante si pour tout entier $n, u_{n+1} < u_n$.

Exemple : la suite $(u_n)_{n\in\mathbb{N}}$ de terme général $u_n=\sqrt{n}$ est croissante.



Remarque

Il existe des suites qui ne sont ni croissantes ni décroissantes.

Par exemple, la suite (u_n) de terme général $u_n = (-1)^n$ n'est ni croissante ni décroissante.

En effet, si n est pair $u_n = 1$, et si n est impair $u_n = -1$.

Ainsi, $u_0 = u_2 = 1$, et $u_1 = -1$.

Comme $u_1 < u_0$, la suite n'est pas croissante.

Comme $u_2 > u_1$, elle n'est pas non plus décroissante.

Remarque

Pour montrer qu'une suite n'est pas croissante, ou pas décroissante, il suffit de donner un contre-exemple.

Exercice 1 (corrigé)

Montrer que la suite (u_n) définie pour tout entier naturel n par $u_n = 3n^2 - 7n + 1$ n'est ni croissante, ni décroissante.

On a $u_0 = 1$, $u_1 = -3$, et $u_2 = -1$.

Comme $u_1 < u_0$, (u_n) n'est pas croissante.

Et comme $u_2 > u_1$, (u_n) n'est pas non plus décroissante.

Méthodes pour étudier le sens de variation d'une suite

1. On étudie le signe de la différence $u_{n+1} - u_n$:

Pour tout $n \in \mathbb{N}$, $u_{n+1} - u_n \ge 0$ équivaut à (u_n) croissante.

Pour tout $n \in \mathbb{N}$, $u_{n+1} - u_n \leq 0$ équivaut à (u_n) décroissante.

- 2. Seulement pour les suites définies par terme général $u_n = f(n)$ (formule explicite), on peut étudier les variations de la fonction f sur $[0; +\infty[$, par exemple en dérivant.
 - Si f est croissante sur $[0; +\infty[$, alors (u_n) est croissante.
 - Si f est décroissante sur $[0; +\infty[$, alors (u_n) est décroissante.
- 3. Dans le cas des suites à termes strictement positifs, on peut aussi former le quotient $\overline{u_{n+1}}$ et le comparer à 1 (utile lorsqu'il y a des puissances).
 - Si pour tout $n \in \mathbb{N}$, $\frac{u_{n+1}}{u} > 1$, alors (u_n) est croissante.
 - Si pour tout $n \in \mathbb{N}$, $\frac{u_n}{u_{n+1}} < 1$, alors (u_n) est décroissante.

Exercice 2 (corrigé)

Étudier le sens de variation des suites suivantes.

1. Pour tout $n \in \mathbb{N}$, $u_n = n^2$.

Méthode 1:

On sait que la fonction f définie par $f(x) = x^2$ est strictement croissante sur $[0; +\infty[$, donc (u_n) est strictement croissante.

Méthode 2:

Pour tout $n \in \mathbb{N}$, $u_{n+1} - u_n = (n+1)^2 - n^2 = n^2 + 2n + 1 - n^2 = 2n + 1$.

Donc, pour tout $n \in \mathbb{N}$, $u_{n+1} - u_n > 0$ (car n est un entier naturel).

Ainsi, pour tout $n \in \mathbb{N}$, $u_{n+1} > u_n$.

La suite (u_n) est strictement croissante.

2. $V_0 = 5$, et pour tout entier $n \in \mathbb{N}$, $V_{n+1} = V_n - \frac{2}{3+n^2}$.

On étudie le signe de $V_{n+1} - V_n$. Pour tout n, $V_{n+1} - V_n = -\frac{2}{3+n^2} < 0$ (car $3+n^2 > 0$).

Donc, pour tout $n, V_{n+1} < V_n$, et la suite (V_n) est strictement décroissante.

3. Pour tout entier n, $W_n = \frac{2}{6n+1}$.

Méthode 1 :

On pose $f(x) = \frac{2}{6x+1}$ et on étudie les variations de f sur $[0; +\infty[$.

6x + 1 ne s'annule pas sur $[0; +\infty[$, donc f est dérivable sur cet intervalle. Pour tout $x \ge 0$, $f'(x) = 2 \times \frac{-6}{(6x+1)^2} = -\frac{12}{(6x+1)^2} < 0$.

Donc f est strictement décroissante sur $[0; +\infty[$, et la suite (W_n) est strictement décroissante.

Méthode 2:

On étudie le signe de $W_{n+1} - W_n$.

Pour tout entier
$$n$$
,
$$W_{n+1} - W_n = \frac{2}{6(n+1)+1} - \frac{2}{6n+1} = \frac{2}{6n+7} - \frac{2}{6n+1} = \frac{2(6n+1)-2(6n+7)}{(6n+1)(6n+7)} = \frac{-12}{(6n+1)(6n+7)} < 0.$$

Donc (W_n) est strictement décroissante.

Exercice 3

Étudier le sens de variation des suites suivantes :

- 1. (a_n) est la suite arithmétique de premier terme $a_0 = 5$ et de raison -3.
- 2. (b_n) est définie par $b_0 = 2$ et pour tout $n \ge 0$, $b_{n+1} = b_n (n-3)^2$.
- 3. Pour tout entier n, $c_n = n^3 9n^2$.
- 4. (d_n) est la suite géométrique de premier terme $d_0 = 1$ et de raison $q = \frac{1}{2}$

\mathbf{II} Suite majorée, suite minorée

Définition

On dit qu'une suite (u_n) est majorée s'il existe un nombre M tel que pour tout entier non ait $u_n \leq M$ (le nombre M est un majorant de la suite).

On dit qu'une suite (u_n) est minorée s'il existe un nombre m tel que pour tout entier n on ait $u_n \geqslant m$ (m est un minorant de la suite).

Une suite qui est à la fois majorée et minorée est dite bornée.

Remarque

Toute suite croissante est minorée par son premier terme.

Toute suite décroissante est majorée par son premier terme.

Exercice 4 (corrigé)

Montrer que la suite (u_n) définie pour tout entier n par $u_n = \frac{7n-1}{n+2}$ est croissante et majorée par 7.

En déduire que (u_n) est bornée et donner un encadrement de u_n valable pour tout $n \in \mathbb{N}$.

Sens de variation

Pour tout
$$n \ge 0$$
, $u_{n+1} - u_n = \frac{7(n+1) - 1}{n+1+2} - \frac{7n-1}{n+2} = \frac{7n+6}{n+3} - \frac{7n-1}{n+2}$.
 $u_{n+1} - u_n = \frac{(7n+6)(n+2) - (7n-1)(n+3)}{(n+2)(n+3)} = \frac{15}{(n+2)(n+3)} > 0$.
En effet, n est en entier naturel, donc $n+2>0$, et $n+3>0$.

Donc pour tout entier $n \ge 0$, $u_{n+1} > u_n$.

 (u_n) est strictement croissante.

Majoration par 7

Pour tout
$$n \ge 0$$
, $u_n - 7 = \frac{7n-1}{n+2} - \frac{7(n+2)}{n+2} = \frac{-15}{n+2} < 0$.
De même, n est un entier naturel, donc $n+2 > 0$.

Donc pour tout entier $n \in \mathbb{N}$, $u_n < 7$.

$\overline{\text{Enca}}$ drement de (u_n)

Toute suite croissante est minorée par son 1er terme.

Ici,
$$u_0 = -0, 5$$
.

Pour tout
$$n \in \mathbb{N}$$
, $-0, 5 \leq u_n < 7$. La suite (u_n) est bornée.

Exercice 5

Soit (u_n) la suite définie pour tout $n \in \mathbb{N}$ par $u_n = \frac{1-2n}{n+5}$

- 1. Montrer que la suite (u_n) est décroissante.
- 2. Justifier qu'elle est minorée par -2.
- 3. En déduire que (u_n) est bornée et donner un encadrement de u_n valable pour tout entier n.