1G. Correction du dm4

Exercice 1

Dans un club sportif, chaque membre ne pratique qu'un seul sport. La répartition est donnée par le tableau suivant.

	Boxe	Tennis	Gymnastique	Total
Femmes	60	230	160	450
Hommes	160	310	80	550
Total	220	540	240	1 000

On choisit au hasard un membre du club, chaque membre a la même probabilité d'être choisi.

On note

- -F: "la personne choisie est une femme",
- T: "la personne choisie joue au tennis".

Les événements F et T sont-ils indépendants? Justifier.

F et T sont indépendants ssi $P(F) = P_T(F)$.

$$P(F) = \frac{450}{1000} = 0,45, \text{ et } P_T(F) = \frac{230}{540} = \frac{23}{54} \approx 0,426.$$

Comme $P(F) \neq P_T(F)$, F et T ne sont pas indépendants.

Exercice 2

En revenant à la définition du nombre dérivé, montrer que la fonction f définie sur $]2; +\infty[$ par $f(x) = \frac{3}{x-2}$ est dérivable en 5, et déterminer f'(5). Soit $h \neq 0$.

$$\frac{f(5+h)-f(5)}{h} = \frac{1}{h} \times \left(\frac{3}{5+h-2}-1\right) = \frac{3-(h+3)}{h(h+3)} = \frac{-h}{h(h+3)} = \frac{-1}{h+3}.$$
Donc $\lim_{h\to 0} \frac{f(5+h)-f(5)}{h} = -\frac{1}{3}.$ Donc f est dérivable en 5 et $f'(5) = -\frac{1}{3}.$

Exercice 3

La tangente à la courbe de la fonction carré au point A d'abscisse -3 passet-elle par le point K(-2;3)? Justifier.

On note f la fonction carré. Pour tout $x \in \mathbb{R}$, $f(x) = x^2$.

f est dérivable sur \mathbb{R} et pour tout $x \in \mathbb{R}$, f'(x) = 2x.

Soit T la tangente au point d'abscisse -3.

Elle a pour équation y = f'(-3)(x - (-3)) + f(-3).

Or, $f(-3) = (-3)^2 = 9$, et comme f'(x) = 2x, $f'(-3) = 2 \times (-3) = -6$.

Ainsi, y = -6(x+3) + 9 = -6x - 9.

Donc T a pour équation y = -6x - 9.

On rappelle K(-2;3).

$$-6x_k - 9 = -6 \times (-2) - 9 = 12 - 9 = 3 = y_k.$$

Les coordonnées de K vérifient l'équation de la droite : $K \in T$.

Exercice 4

Soit f la fonction inverse définie sur \mathbb{R}^* par $f(x) = \frac{1}{x}$

1. Soit $a \neq 0$. Exprimer en fonction de a l'équation de la tangente T_a à la courbe de f au point d'abscisse a.

En tout réel $a \neq 0$, f est dérivable et $f'(a) = -\frac{1}{a^2}$

$$y = f'(a)(x - a) + f(a)$$

$$y = -\frac{1}{a^2}(x - a) + \frac{1}{a}$$

$$y = -\frac{1}{a^2}x + \frac{a}{a^2} + \frac{1}{a}$$

$$y = -\frac{1}{a^2}x + \frac{2}{a}$$

$$T_a$$
 a pour équation $y = -\frac{1}{a^2}x + \frac{2}{a}$.

2. Soit d la droite d'équation $y = -\frac{1}{9}x + 7$.

Montrer qu'il existe deux tangentes à la courbe de f qui sont parallèles à la droite d. Pour chacune, donner l'équation réduite et les coordonnées du point de contact avec la courbe de f.

 T_a est parallèle à d ssi T_a a le même coefficient directeur que d, $-\frac{1}{9}$

Le coefficient directeur de T_a est $f'(a) = -\frac{1}{a^2}$.

D'où
$$-\frac{1}{a^2} = -\frac{1}{9}$$
 ssi $a^2 = 9$ ssi $(a = -3 \text{ ou } a = 3)$.

Il y a deux tangentes parallèles à la droite d, ce sont les tangentes aux points d'abscisses respectives -3 et 3.

- Pour T_3 .

Point de contact : $f(3) = \frac{1}{3}$. $A\left(3; \frac{1}{3}\right)$.

Équation réduite (en remplaçant a par 3 dans le résultat de la question 1) : $y = -\frac{1}{3^2}x + \frac{2}{3} = -\frac{1}{9}x + \frac{2}{3}$.

— Pour T_{-3} .

Point de contact : $f(-3) = \frac{1}{-3} = -\frac{1}{3}$. $B\left(-3; -\frac{1}{3}\right)$.

Équation réduite : $y = -\frac{1}{(-3)^2}x + \frac{2}{(-3)} = -\frac{1}{9}x - \frac{2}{3}$.

Les tangentes parallèles à d sont :

au point $A\left(3; \frac{1}{3}\right)$, T_3 d'équation $y = -\frac{1}{9}x + \frac{2}{3}$,

et au point $B\left(-3; -\frac{1}{3}\right)$, T_{-3} d'équation $y = -\frac{1}{9}x - \frac{2}{3}$.