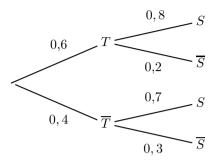
1re G. Correction du devoir n° 3

Exercice 1 (3 points)

On a représenté une expérience aléatoire par l'arbre pondéré ci-dessous.



1. Donner sans justification les probabilités suivantes :

$$\begin{split} &P(T)\,;\,P_{\overline{T}}(\overline{S})\,;\,P_{\overline{T}}(S)\\ &P(T)=0,6\,;\,P_{\overline{T}}(\overline{S})=0,3\,;\,P_{\overline{T}}(S)=0,7 \end{split}$$

2. Montrer que P(S) = 0.76.

T et \overline{T} forment une partition de l'univers, d'après la formule des probabilités totales.

$$P(S) = P(T \cap S) + P(\overline{T} \cap S) P(S) = P(T) \times P_T(S) + P(\overline{T}) \times P_{\overline{T}}(S) P(S) = 0, 6 \times 0, 8 + 0, 4 \times 0, 7 = 0, 48 + 0, 28 = 0, 76.$$

3. Déterminer, en justifiant, la probabilité conditionnelle $P_S(T)$.

$$P_S(T) = \frac{P(T \cap S)}{P(S)} = \frac{0.48}{0.76} = \frac{12}{19}$$

Exercice 2 (3 points)

Les données sont celles du tableau de probabilités ci-dessous où A et B sont deux événements d'une expérience alétoire.

	A	\overline{A}	Total
В	0,32	0,32	0,64
\overline{B}	0,16	0,2	0,36
Total	0,48	0,52	1

Donner sans justification : $P(\overline{B})$; P(A); $P(A \cap B)$; $P(A \cup B)$.

$$P(\overline{B}) = 0.36, P(A) = 0.48; P(A \cap B) = 0.32$$

$$P(\overline{B}) = 0.36, P(A) = 0.48; P(A \cap B) = 0.32;$$

 $P_A(B) = \frac{P(A \cap B)}{P(A)} = \frac{0.32}{0.48} = \frac{2}{3}$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = 0.48 + 0.64 - 0.32 = 0.8.$$

Exercice 3 (5 points)

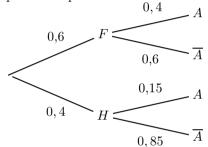
Une salle de sport ouvre dans une commune composée de 9000 femmes et 6000 hommes. Un sondage montre que 40% des femmes sont prêtes à prendre un abonnement, contre seulement 15% des hommes. On rencontre au hasard un habitant de la commune. On note :

- -F: "la personne est une femme".
- -H: "la personne est un homme".
- A : " le personne est prête à prendre un abonnement".
- 1. Montrer que P(F) = 0, 6.

Il y a équiprobabilité.

$$P(F) = \frac{nb \ cas \ favorables}{nb \ cas \ total} = \frac{9000}{9000 + 6000} = \frac{9}{15} = \frac{3}{5} = 0, 6.$$

2. Contruire un arbre pondéré représentant la situation.



- 3. Traduite par une phrase l'évènement $F \cap A$, puis calculer sa probabilité. $F \cap A$: "La personne est une femme et est prête à s'abonner". $P(F \cap A) = P(F) \times P_F(A) = 0.6 \times 0.4 = 0.24.$
- 4. Calculer la probabilité que la personne soit un homme prêt à prendre un abonnement.

$$P(H \cap A) = P(H) \times P_H(A) = 0, 4 \times 0, 15 = 0, 06.$$

La probabilité que ce soit un homme prêt à s'abonner est 0,06.

5. Pauline trouve un papier de sondage d'un habitant indiquant "je ne veux pas m'abonner". Déterminer la probabilité que l'écriture soit celle d'une femme.

On cherche
$$P_{\overline{A}}(F) = \frac{P(F \cap \overline{A})}{P(\overline{A})}$$
.

1

F et H forment une partition de l'univers.

D'après la formule des probabilités totales,

$$P(A) = P(F \cap A) + P(H \cap A) = 0,24 + 0,06 = 0,3.$$

Donc
$$P(\overline{A}) = 1 - P(A) = 1 - 0, 3 = 0, 7.$$

Ainsi, $P_{\overline{A}}(F) = \frac{P(F \cap \overline{A})}{P(\overline{A})} = \frac{0, 6 \times 0, 6}{0, 7} = \frac{18}{35} \approx 0,514.$

Sachant que le papier indique "Je ne veux pas m'abonner", la probabilité que ce soit l'écriture d'une femme est de $\frac{10}{25}$

Exercice 4 (2 points)

Dans un club sportif, chaque membre ne pratique qu'un seul sport. La répartition est donnée par le tableau suivant.

	Boxe	Tennis	Gymnastique	Total
Femmes	60	230	160	450
Hommes	160	310	80	550
Total	220	540	240	1 000

On choisit au hasard un membre du club, chaque membre a la même probabilité d'être choisi.

On note

- F: "la personne choisie est une femme".
- T: "la personne choisie joue au tennis".

Les événements F et T sont-ils indépendants? Justifier.

F et T sont indépendants ssi $P(F) = P_T(F)$.

$$P(F) = \frac{450}{1000} = 0,45, \text{ et } P_T(F) = \frac{230}{540} = \frac{23}{54} \approx 0,426.$$

Comme $P(F) \neq P_T(F)$, F et T ne sont pas indépendants.

Exercice 5 (3 points)
1. La suite (A_n) est définie sur \mathbb{N} par $\begin{cases} A_0 = 4 \\ A_{n+1} = A_n - \frac{n^2 + 4}{3} \end{cases}$

Montrer que (A_n) est décroissante

Pour tout entier $n \in \mathbb{N}$, $A_{n+1} - A_n = -\frac{n^2 + 4}{3} < 0$ car n est un entier naturel.

Donc pour tout $n \in \mathbb{N}$, $A_{n+1} < A_n$.

La suite (A_n) est strictement décroissante.

2. Pour tout entier $n \in \mathbb{N}$, on pose $C_n = n + (-2)^n \times (n+7)$.

Montrer que (C_n) n'est ni croissante ni décroissante.

$$C_0 = 0 + (-2)^0 \times (0+7) = 1 \times 7 = 7.$$

$$C_1 = 1 + (-2)^1 \times (1+7) = 1 - 2 \times 8 = 1 - 16 = -15.$$

$$C_2 = 2 + (-2)^2 \times (2+7) = 2 + 4 \times 9 = 2 + 36 = 38.$$

Comme $C_1 < C_0$, la suite (C_n) n'est pas croissante.

Comme $C_2 > C_1$, la suite (C_n) n'est pas non plus décroissante.

Donc (C_n) est ni croissante ni décroissante (pas monotone).

Exercice 6 (4 points)

Pour tout entier $n \in \mathbb{N}$, on pose $B_n = \frac{11n}{3n+1}$.

1. Vérifier que pour tout $n \in \mathbb{N}$, $B_{n+1} - B_n = \frac{11}{(3n+1)(3n+4)}$. Oue peut-on en déduire sur la suite (B_n) ?

Pour tout entier n.

$$B_{n+1} - B_n = \frac{11(n+1)}{3(n+1)+1} - \frac{11n}{3n+1} = \frac{11n+11}{3n+4} - \frac{11n}{3n+1}$$

$$B_{n+1} - B_n = \frac{(11n+11)(3n+1) - 11n(3n+4)}{(3n+4)(3n+1)}.$$

$$B_{n+1} - B_n = \frac{33n^2 + 11n + 33n + 11 - 33n^2 - 44n}{(3n+1)(3n+4)}$$

$$B_{n+1} - B_n = \frac{11}{(3n+1)(3n+4)} > 0 \text{ car } n \geqslant 0.$$
Donc pour tout entier $n \in \mathbb{N}$, $B_{n+1} > B_n$.
$$(B_n) \text{ est strictement croissante.}$$

2. Calculer $B_n - \frac{11}{3}$, et en déduire que (B_n) est majorée par $\frac{11}{3}$.

$$B_n - \frac{11}{3} = \frac{11n}{3n+1} - \frac{11}{3}$$

$$= \frac{11n \times 3 - 11(3n+1)}{3(3n+1)}$$

$$= \frac{33n - 33n - 11}{3(3n+1)}$$

$$= -\frac{11}{3(3n+1)} < 0$$

Donc pour tout entier $n \in \mathbb{N}$, $B_n < \frac{11}{3}$. La suite (B_n) est majorée par $\frac{11}{3}$.

La suite
$$(B_n)$$
 est majorée par $\frac{11}{3}$.

3. En s'appuyant sur les questions précédentes, justifier que (B_n) est bornée. Comme (B_n) est croissante, elle est minorée par son premier terme, qui est $B_0 = \frac{11 \times 0}{3 \times 0 + 1} = 0.$

Donc (B_n) est bornée, et pour tout entier $n \in \mathbb{N}, 0 \leqslant B_n < \frac{11}{2}$.

Exercice 7 (bonus, 2 points)

- 1. On considère la liste Python L=[2,-1,8,3]. Écrire en extension la liste A=[x*(x+3) for x in L]A=[10,-2,88,18]
- 2. Écrire en extension la liste B=[1+2**k for k in range(5)] B=[2,3,5,9,17]