Seconde 2. Correction de l'interrogation de mathématiques nº 12

Exercice 1 (cours: 4 points)

1. Donner le tableau de variation de la fonction carré.

x	$-\infty$		0	$+\infty$
x^2		\	0	

2. Donner le tableau de variation de la fonction inverse.

x	$-\infty$	0	$+\infty$
$\frac{1}{x}$			

- 3. Compléter.
 - (a) Pour tous événements A et B, $P(\overline{A}) = 1 - P(A)$ $0 \leqslant P(A) \leqslant 1$ $P(A \cup B) = P(A) + P(B) - P(A \cap B)$
 - (b) Il y a équiprobabilité lorsque tous les événements élémentaires ont la même probabilité.

Exercice 2 (5 points)
1. Soit le réel $a = 2 - \frac{2}{3}$. Mettre a, puis a^2 et $\frac{1}{a}$ sous forme de fraction irréductible

$$a = 2 - \frac{2}{3} = \frac{6 - 2}{3} = \frac{4}{3}$$
. Donc $a^2 = \left(\frac{4}{3}\right)^2 = \frac{16}{9}$, et $\frac{1}{a} = \frac{3}{4}$.

- 2. Résoudre les équations suivantes. Justifier.
- (a) $4x^2 1 = 0$ $4x^2 - 1 = 0$ ssi $x^2 = \frac{1}{4}$ ssi $(x = \sqrt{\frac{1}{4}} = \frac{1}{2}$ ou $x = -\sqrt{\frac{1}{4}} = -\frac{1}{2})$. Les solutions sont $\frac{1}{2}$ et $-\frac{1}{2}$.
- (b) $\frac{1}{-} = -3x$ Soit $x \neq 0$. $\frac{1}{x} = -3x \text{ ssi } x^2 = -\frac{1}{3}.$ Or, un carré est toujours positif. L'équation n'a pas de solution.

3. Soit un réel x tel que $-3 \le x \le 2$. Donner le meilleur encadrement de x^2 . Justifier la réponse. La fonction carré n'est pas monotone sur [-3; 2].

x	-3	0	2
x^2	9		4

Sur cet intervalle, son minimum est 0 et son maximum est 9.

$$0 \leqslant x^2 \leqslant 9$$

4. Donner un réel b vérifiant $-3 < \frac{1}{b} < -2$. Aucune justification n'est demandée.

Par exemple,
$$b = -\frac{1}{2,6} = -\frac{5}{13}$$
 convient.

Exercice 3 (5 points)

Une enquête nous apprend que sur 400 ménages, 80 ont au moins un chien, 100 ont au moins un chat, et 20 ont à la fois au moins un chien et un chat.

1. Compléter le tableau des effectifs suivant :

	Au moins un chien	Pas de chien	Total
Au moins un chat	20	80	100
Pas de chat	60	240	300
Total	80	320	400

- 2. On choisit un ménage au hasard. Tous les ménages ont la même probabilité d'être choisis. On note :
 - A: « Le ménage a au moins un chien »;
 - B: « Le ménage a au moins un chat »;
 - et \overline{A} , \overline{B} leurs événements contraires.
 - (a) Calculer P(A). Justifier.

D'après l'énoncé, « Tous les ménages ont la même probabilité d'être choisis ». Il y a donc équiprobabilité.

On calcule les probabilités des événements par la formule nb de cas favorables

$$P(A) = \frac{80}{400} = 0.2.$$

(b) Calculer P(B).

1

De même,
$$P(B) = \frac{100}{400} = 0.25$$
.

(c) Définir par une phrase l'événement $A\cap B$ et calculer sa probabilité.

 $A\cap B$: « Le ménage a au moins un chien et au moins un chat » .

$$P(A \cap B) = \frac{20}{400} = 0.05.$$

(d) Définir par une phrase l'événement $A \cup B$ et calculer sa probabilité.

 $A \cup B$: « Le ménage a au moins un chat ou au moins un chien ».

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

= 0.2 + 0.25 - 0.05
= 0.4

Donc la probabilité que le ménage ait un chat ou un chien est 0.4.

(e) Exprimer à l'aide des données de l'énoncé l'événement : « Le ménage n'a ni chien ni chat ». Calculer la probabilité de cet événement.

L'événement « Le ménage n'a ni chien ni chat » correspond à $\overline{A} \cap \overline{B}$.

$$P(\overline{A} \cap \overline{B}) = \frac{240}{400} = 0.6.$$

Autre méthode:

On peut remarquer que $\overline{A} \cap \overline{B} = \overline{A \cup B}$.

D'où
$$P(\overline{A} \cap \overline{B}) = 1 - P(A \cup B) = 1 - 0.4 = 0.6.$$

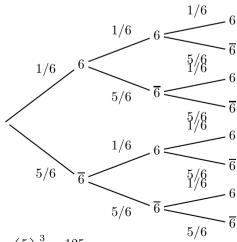
Exercice 4 (2 points)

On lance un dé cubique équilibré trois fois de suite.

Quelle est la probabilité d'obtenir au moins une fois le résultat 6? Justifier.

Notons A: "on obtient au moins un 6".

Alors \overline{A} : "on n'obtient aucun 6"



$$P(\overline{A} = P(\overline{6}; \overline{6}; \overline{6}) = \left(\frac{5}{6}\right)^3 = \frac{125}{216}.$$

Donc
$$P(A) = 1 - P(\overline{A}) = 1 - \frac{125}{216} = \frac{91}{216}$$
.

La probabilité d'obtenir au moins un 6 sur 3 lancers est de $\frac{91}{216}$ soit environ 0,42.

Exercice 5 (4 points)

Dans un repère du plan, on considère la droite d d'équation

$$x - 2y - 3 = 0.$$

1. Étudier par le calcul si points suivants appartiennent à d: A(-1;2), et B(11;4).

$$-1 - 2 \times 2 - 3 = -8 \neq 0.$$

$$11 - 2 \times 4 - 3 = 11 - 11 = 0.$$

Donc $A \notin d$.

Donc $B \in d$.

2. Déterminer les coordonnées du point de d d'abscisse égale à 7. Comme $C(7;y) \in d$, les coordonnées vérifient l'équation, soit 7-2y-3=0, puis -2y+4=0, et y=2.

Le point de d qui a une abscisse égale à 7 est C(7;2).

3. Donner les coordonnées d'un vecteur directeur de d. Avec le cours, la droite d'équation ax + by + c = 0 est dirigée par le vecteur $\overrightarrow{u}(-b;a)$.

Ainsi, $\overrightarrow{u}(2;1)$ est un vecteur directeur de d.

Méthode 2 : B(11;4), et C(7;2) appartiennent à d, donc le vecteur \overrightarrow{BC} est un vecteur directeur de d.

 $\overrightarrow{BC}(x_C - x_B; y_C - y_B)$, puis $\overrightarrow{BC}(-4; -2)$

On vérifie facilement que ces 2 vecteurs sont colinéaires, $\overrightarrow{BC} = -2\overrightarrow{u}$.

- 4. On considère les points E(5; -3) et F(-4; 1).
- (a) Déterminer les coordonnées d'un vecteur directeur de la droite (EF).

Le vecteur \overrightarrow{EF} dirige la droite (EF).

$$\overrightarrow{EF}(x_F - x_E; y_F - y_E)$$
, soit $\overrightarrow{EF}(-9; 4)$.

 $\overrightarrow{EF}(-9;4)$ est un vecteur directeur de la droite (EF)

(b) Les droites (EF) et d sont-elles parallèles? Justifier.

On étudie si les vecteurs directeurs respectifs $\overrightarrow{u}(2;1)$ et $\overrightarrow{EF}(-9;4)$ sont colinéaires.

$$\det(\overrightarrow{u}; \overrightarrow{EF}) = xy' - yx' = 2 \times 4 - 1 \times (-9) = 17 \neq 0.$$

 \overrightarrow{u} et \overrightarrow{EF} ne sont pas colinéaires.

Donc les droites (EF) et d ne sont pas parallèles, elles sont sécantes.