Correction du contrôle de mathématiques nº 2

Exercice 1 (2 points)

En revenant à la définition du nombre dérivé, montrer que la fonction f définie sur \mathbb{R} par $f(x) = -x^2 + 3x$ est dérivable en 5, et déterminer f'(5).

On calcule le taux d'accroissement entre 5 et 5 + h:

On calcule le taux d'accroissement entre 5 et
$$5 + h$$
:
$$T(h) = \frac{f(5+h) - f(5}{h} = \frac{-(5+h)^2 + 3(5+h) - (-25-3\times5)}{h}$$

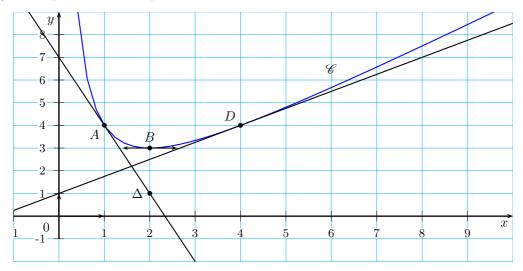
$$T(h) = \frac{-(25+10h+h^2) + 15 + 3h + 10}{h} = \frac{-7h - h^2}{h} = -7 - h$$

$$\lim_{h\to 0} T(h) = \lim_{h\to 0} -7 - h = -7$$
, donc f est dérivable en 5 et $f'(5) = -7$.

Exercice 2 (3,5 points)

Le graphique ci-dessous donne la courbe \mathscr{C} d'une fonction f définie et dérivable sur $]0;+\infty[$. La droite Δ est tangente à la courbe \mathscr{C} au point A.

La tangente au point B à $\mathscr C$ est parallèle à l'axe des abscisses.



- 1. Lire graphiquement les valeurs de f(1) et f(2).
 - f(1) est l'ordonnée du point de la courbe d'abscisse 1. Donc f(1) = 4.

De même,
$$f(2) = 3$$
.

- 2. Déterminer à l'aide du graphique, mais en justifiant, les valeurs de f'(1) et f'(2).
 - f'(1) est le coefficient directeur de la tangente à la courbe au point d'abscisse 1, donc au point A. Cette tangente est la droite Δ , passant par A(1;4) et C(2;1).

Elle a une équation de la forme y = mx + p.

$$m = \frac{y_C - y_A}{x_C - x_A}$$
$$= \frac{1 - 4}{2 - 1}$$
$$= -3$$

Donc f'(1) = -3.

f'(2) est le coefficient directeur de la tangente à la courbe au point B (d'abscisse 2).

Comme cette tangente est parallèle à l'axe des abscisses, son coefficient directeur est nul. Donc f'(2) = 0.

$$f'(2) = 0.$$

 $f'(1) = -3 \text{ et } f'(2) = 0.$

- 3. On admet désormais que pour tout x > 0, $f'(x) = 1 \frac{4}{x^2}$.
 - Vérifier que $f'(4) = \frac{3}{4}$ et tracer la tangente à la courbe de f au point d'abscisse 4.

$$f'(4) = 1 - \frac{4}{4^2} = 1 - \frac{1}{4} = \frac{3}{4}$$

 $f'(4) = 1 - \frac{4}{4^2} = 1 - \frac{1}{4} = \frac{3}{4}$. La tangente T_4 passe par le point de la courbe d'abscisse 4, soit D(4;4) et a pour coefficient directeur $f'(4) = \frac{3}{4}$

Exercice 3 (1,5 point)

La tangente à la courbe de la fonction carré au point A(2;4) passe-t-elle par le point K(-1;-8)? Justifier. On pose $f(x) = x^2$.

Alors, pour tout
$$x \in \mathbb{R}$$
, $f'(x) = 2x$.

$$f(2) = 2^2 = 4$$
, et $f'(2) = 2 \times 2 = 4$.

La tangente T_2 à la courbe a pour équation réduite :

$$y = f'(2)(x-2) + f(2) = 4(x-2) + 4 = 4x - 4.$$

On teste les coordonnées de K dans l'équation de la tangente.

$$4x_K - 4 = 4 \times (-1) - 4 = -8 = y_K.$$

Donc la tangente T_2 passe effectivement par le point K(-1; -8).

Exercice 4 (4 points)

Soit (u_n) la suite définie pour tout $n \in \mathbb{N}$ par

$$u_n = \frac{1 - 2n}{n + 5}.$$

1. Montrer que la suite (u_n) est décroissante.

$$u_{n+1} = \frac{1 - 2(n+1)}{(n+1) + 5} = \frac{-2n - 1}{n+6}$$
, donc

$$u_{n+1} - u_n = \frac{-1 - 2n}{n + 6} - \frac{1 - 2n}{n + 5} = \frac{(-2n - 1)(n + 5) - (1 - 2n)(n + 6)}{(n + 6)(n + 5)}$$

$$u_{n+1} - u_n = \frac{-1 - 2n}{n+6} - \frac{1 - 2n}{n+5} = \frac{(-2n-1)(n+5) - (1-2n)(n+6)}{(n+6)(n+5)}$$

$$u_{n+1} - u_n = \frac{(-2n^2 - 10n - n - 5) - (n+6 - 2n^2 - 12n)}{(n+6)(n+5)} = \frac{-2n^2 - 11n - 5 - n + 2n^2 - 6 + 12n}{(n+6)(n+5)}$$

$$u_{n+1} - u_n = \frac{-11}{(n+6)(n+5)}$$
Reference of the content of

$$u_{n+1} - u_n = \frac{-11}{(n+6)(n+5)}$$

Puisque $n \ge 0$, (n+6)(n+5) > 0, donc $u_{n+1} - u_n < 0$, donc la suite u est décroissante.

2. Montrer que pour tout
$$n \ge 0$$
, $u_n + 2 = \frac{11}{n+5}$.
$$u_n + 2 = \frac{1-2n}{n+5} + 2 = \frac{1-2n+2n+10}{n+5} = \frac{11}{n+5}.$$
3. En déduire que (u_n) est bornée et donner un encadrement de u_n valable pour tout entier n .

$$\frac{11}{n+5}$$
 est positif donc pour tout entier $n \in \mathbb{N}$, $u_n + 2 > 0$, soit $u_n > -2$.

La suite (u_n) est décroissante donc majorée par son premier terme $u_0 = \frac{1}{\kappa}$

Ainsi, pour tout $n \in \mathbb{N}$, $-2 < u_n \leqslant \frac{1}{5}$. La suite est minorée et majorée donc elle est bornée.

Exercice 5 (4 points)

On considère la suite (A_n) définie par $A_0 = 1$ et pour tout entier $n \ge 0$,

$$A_{n+1} = \frac{1}{3}A_n + 4.$$

1. Calculer
$$A_1$$
 et A_2 (rédiger les calculs).

$$A_1 = \frac{1}{3}A_0 + 4 = \frac{1}{3} + \frac{12}{3} = \frac{13}{3}.$$

$$A_2 = \frac{1}{3}A_1 + 4 = \frac{1}{3} \times \frac{13}{3} + 4 = \frac{13}{9} + \frac{36}{9} = \frac{49}{9}.$$

2. Compléter l'algorithme de calcul de A_n pour un entier $n \ge 1$ donné en entrée.

Debut

Entrer
$$N$$

A prend la valeur 1

Pour
$$K$$
 allant de 1 à N

Pour
$$K$$
 allant de 1 à N A prend la valeur $\frac{1}{3} \times A + 4$

Fin Pour

$${\tt Afficher}\ A$$

FIN

- 3. Utiliser la calculatrice pour donner une valeur approchée de A_8 . Arrondir à 10^{-4} près. $A_8 \approx 5,9992.$
- 4. On admet que la suite (A_n) est croissante et converge vers 6.
 - (a) Écrire un algorithme qui renvoie le plus petit entier n_0 tel que $6 A_{n_0} < 10^{-7}$. DEBUT

N prend la valeur ${\tt O}$

A prend la valeur 1

Tant que $6 - A \geqslant 10^{-7}$

N prend la valeur N+1

A prend la valeur $\frac{1}{3}A+4$

Fin Tant que

Afficher N

FIN

(b) Programmer l'algorithme à la calculatrice et indiquer la valeur de n_0 . On trouve $n_0 = 17$.

Exercice 6 (5 points +1 bonus)

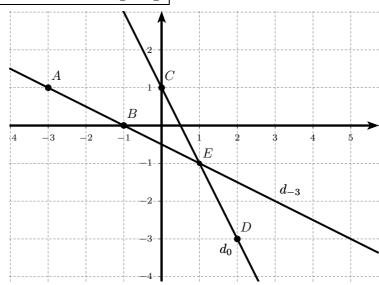
1. Déterminer une équation de la droite passant par A(-3;1) et B(-1;0), et tracer la droite (AB).

$$m = \frac{y_B - y_A}{x_B - x_A} = \frac{0 - 1}{-1 + 3} = -\frac{1}{2}.$$

(AB) a une équation réduite de la forme $y = -\frac{1}{2}x + p$.

Comme
$$A(-3;1) \in (AB)$$
, on a $1 = -\frac{1}{2} \times (-3) + p$, soit $p = -\frac{1}{2}$.

Donc
$$(AB)$$
 a pour équation $y = -\frac{1}{2}x - \frac{1}{2}$.



- 2. Pour tout réel m, on appelle d_m la droite d'équation (m+2)x + (m+1)y 1 = 0.
 - (a) Donner l'équation réduite de d_0 et tracer d_0 sur le même graphique. Pour m = 0, l'équation devient 2x + y - 1 = 0, soit y = -2x + 1.

x	0	2
y	1	-3

Donc d_0 est la droite d'équation y = -2x + 1 passant par C(0;1) et D(2;-3).

(b) Vérifier que la droite (AB) est d_{-3} .

Avec m = -3, on obtient -x - 2y - 1 = 0, soit $y = -\frac{1}{2}x - \frac{1}{2}$.

On retrouve l'équation réduite de la droite (AB). Donc d_{-3} est la droite (AB).

(c) Donner, en fonction de m, les coordonnées d'un vecteur directeur de la droite d_m .

 d_m est dirigée par le vecteur \overrightarrow{u}

(d) Déterminer les réels m pour lesquels d_m est parallèle à l'axe des ordonnées. d_m est parallèle à l'axe des ordonnées ssi (m+1) = 0, ssi m = -1.

(e) Bonus

Montrer que toutes les droites d_m passent par un même point E dont on déterminera les coordonnées.

On observe graphiquement que d_0 et d_{-3} se coupent au point E(1;-1).

Il suffit de vérifier que quelle que soit la valeur de m, le point E appartient à d_m .

$$(m+2) \times 1 + (m+1) \times (-1) - 1 = m+2-m-1-1 = 0.$$

Donc toutes les droites d_m passent par le point E(1;-1).

Exercice 7 (bonus, 1 point)

Montrer que la courbe de la fonction inverse admet en deux points une tangente parallèle à la droite d'équation $y = -\frac{1}{4}x + 3$ et préciser les abscisses de ces deux points.

La tangente est parallèle à cette droite si elle a le même coefficient diecteur $-\frac{1}{4}$.

Or, le coefficient directeur de la tangente au point d'abscisse a est f'(a).

On résout
$$f'(x) = \frac{-1}{4}$$
.

f est dérivable en tout réel $x \neq 0$, et pour tout $x \neq 0$, $f'(x) = \frac{-1}{x^2}$.

Donc
$$\frac{-1}{x^2} = \frac{-1}{4}$$
, $x^2 = 4$, et donc $(x = -2 \text{ ou } x = 2)$.

La courbe de la fonction inverse admet des tangentes parallèles à la droite d'équation $y = -\frac{1}{4}x + 3$ aux points d'abscisses -2 et 2.