Chapitre 1 : Second degré

I Étude des fonctions trinômes du second degré

I.1 Activité d'introduction

Exercice 1 (avec un algorithme)

On considère l'algorithme suivant donné sous la forme d'une fonction en langage Python :

def f(x) :
 a=x+2
 b=x-6
 y=a*b
 return(y)

- 1. Montrer que si l'on entre 8, le nombre affiché en sortie est 20.
- 2. Quelle est l'expression de la fonction associée à cet algorithme? On note f cette fonction.
- 3. Étudier si les affirmations suivantes sont vraies ou fausses. Justifier.
 - (a) "l'algorithme renvoie un résultat toujours positif ou nul",
 - (b) "f est croissante sur \mathbb{R} ",
- 4. Étudier le signe de f sur \mathbb{R} .
- 5. (a) Vérifier que pour tout $x \in \mathbb{R}$, $f(x) = (x-2)^2 16$.
 - (b) En déduire que f admet un minimum de -16 et préciser en quelle valeur il est atteint.

Propriété (forme canonique de seconde)

Soit f une fonction trinôme du second degré définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$, avec a, b, et c réels, $a \neq 0$.

Il existe des réels α et β uniques tels que pour tout $\in \mathbb{R}$,

$$f(x) = a(x - \alpha)^2 + \beta.$$

Cette expression est appelée la forme canonique de f.

Dans un repère orthogonal du plan, la courbe représentative de f est une parabole de sommet le point $S(\alpha; \beta)$.

La parabole est orientée vers le haut si et seulement si a > 0.

La parabole est orientée vers le bas si et seulement si a > 0.

Remarque

La droite d'équation $x = \alpha$ est axe de symétrie de la parabole.

Exercice 2 (exploiter la forme canonique)

Pour chacune des fonctions suivantes, déterminer le tableau de variation puis résoudre l'équation f(x) = 0.

1

- 1. Pour tout $x \in \mathbb{R}$, $f(x) = 2(x-5)^2 + 1$.
- 2. Pour tout $x \in \mathbb{R}$, $f(x) = (x+7)^2 9$.
- 3. Pour tout $x \in \mathbb{R}$, $f(x) = -\frac{1}{2}(x-1)^2 6$

Exercice 3 (mise sous forme canonique)

Mettre sous forme canonique les fonctions suivantes :

- 1. Pour tout $x \in \mathbb{R}$, $f(x) = x^2 10x + 1$.
- 2. Pour tout $x \in \mathbb{R}$, $g(x) = 2x^2 24x 3$.
- 3. Pour tout $x \in \mathbb{R}$, $h(x) = x^2 + 3x 4$.

I.2 Forme canonique du trinôme $ax^2 + bx + c$

Posons $f(x) = ax^2 + bx + c$, avec $a \neq 0$.

$$f(x) = a\left(x^2 + \frac{b}{a}x + \frac{c}{a}\right)$$

$$= a\left[x^2 + 2 \times x \times \frac{b}{2a} + \left(\frac{b}{2a}\right)^2 - \left(\frac{b}{2a}\right)^2 + \frac{c}{a}\right]$$

$$= a\left[\left(x + \frac{b}{2a}\right)^2 - \frac{b^2}{4a^2} + \frac{4ac}{4a^2}\right]$$

$$= a\left[\left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a^2}\right]$$

En posant $\Delta = b^2 - 4ac$,

$$f(x) = a \left[\left(x + \frac{b}{2a} \right)^2 - \frac{\Delta}{4a^2} \right]$$

Cette écriture s'appelle la forme canonique de f.

Le nombre $\Delta = b^2 - 4ac$ est le discriminant de f.

Exercice 4

Déterminer la forme canonique d'une fonction trinôme du second degré : ressource 107

I.3 Équation $ax^2 + bx + c = 0$

- Si $\Delta < 0$. Alors $-\frac{\Delta}{4a^2} > 0$ et $\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a^2} > 0$ donc l'équation n'a pas de solution.
- Si $\Delta = 0$. Alors $f(x) = a \left(x + \frac{b}{2a} \right)^2$. $f(x) = 0 \Leftrightarrow x = -\frac{b}{2a}$.

L'équation f(x) = 0 a une unique solution qui est $-\frac{b}{2a}$.

• Si $\Delta > 0$, on peut parler de $\sqrt{\Delta}$.

$$f(x) = a \left[\left(x + \frac{b}{2a} \right)^2 - \frac{\Delta}{4a^2} \right]$$

$$= a \left[\left(x + \frac{b}{2a} \right)^2 - \left(\frac{\sqrt{\Delta}}{2a} \right)^2 \right] \quad \text{(identit\'e remarquable)}$$

$$= a \left(x + \frac{b}{2a} + \frac{\sqrt{\Delta}}{2a} \right) \left(x + \frac{b}{2a} - \frac{\sqrt{\Delta}}{2a} \right)$$

$$= a \left(x - \frac{-b - \sqrt{\Delta}}{2a} \right) \left(x - \frac{-b + \sqrt{\Delta}}{2a} \right)$$

L'équation f(x) = 0 a deux racines réelles :

$$f(x) = 0$$
 \Leftrightarrow $\left(x = \frac{-b - \sqrt{\Delta}}{2a} \text{ ou } x = \frac{-b + \sqrt{\Delta}}{2a}\right)$

Théorème (Équation $ax^2 + bx + c = 0$)

Soit $f(x) = ax^2 + bx + c$.

Posons $\Delta = b^2 - 4ac$.

- Si $\Delta < 0$, f n'a pas de racine réelle, et on ne peut pas factoriser f(x).
- Si $\Delta = 0$, alors f a une unique racine (double) qui est $x_0 = -\frac{b}{2a}$, et f admet la factorisation

$$f(x) = a\left(x + \frac{b}{2a}\right)^2.$$

• Si $\Delta > 0$, alors f a deux racines réelles distinctes :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$.

On a alors la factorisation

$$f(x) = a(x - x_1)(x - x_2).$$

Exercice 5

Résoudre l'équation $x^2 + 7x + 10 = 0.$

Exercice 6

- 1. Calcul mental du discriminant : ressource 3797
- 2. Résoudre une équation du second degré : ressource 108

I.4 Somme et produit des racines lorsque $\Delta > 0$

On suppose ici que $\Delta > 0$.

$$ax^{2} + bx + c = a(x - x_{1})(x - x_{2})$$

$$a\left(x^{2} + \frac{b}{a}x + \frac{c}{a}\right) = a\left[x^{2} - (x_{1} + x_{2})x + x_{1}x_{2}\right]$$

^{1.} $\Delta = 9$, puis on trouve $S = \{-5, -2\}$.

Par identification:

$$\begin{cases} x_1 + x_2 &= -\frac{b}{a} \\ x_1 \times x_2 &= \frac{c}{a} \end{cases}$$

Théorème (Somme et produit des racines)

- 1. Si le polynôme $ax^2 + bx + c$ a des racines (i.e. $\Delta > 0$), leur somme est $-\frac{b}{a}$ et leur produit est $\frac{c}{a}$.
- 2. Deux nombres ont pour somme S et pour produit P si et seulement si ce sont les racines du polynôme $x^2 Sx + P$.

Remarque

Le second point fournit une méthode pour trouver deux nombres dont on connaît la somme et le produit.

Exercice 7

Existe-t-il des rectangles dont le périmètre mesure 22 cm et l'aire 24 cm²? Lesquels ? 2

I.5 Signe de $ax^2 + bx + c$

• Si $\Delta < 0$

$$ax^{2} + bx + c = a\left[\left(x + \frac{b}{2a}\right)^{2} - \frac{\Delta}{4a^{2}}\right]$$

avec
$$\left[\left(x+\frac{b}{2a}\right)^2-\frac{\Delta}{4a^2}\right]>0$$
 d'où :

x	$-\infty$	$+\infty$
$ax^2 + bx + c$	signe de a	

• Si $\Delta = 0$

$$ax^2 + bx + c = a\left(x + \frac{b}{2a}\right)^2$$

x	$-\infty$		$-\frac{b}{2a}$	-	$+\infty$
$\left(x + \frac{b}{2a}\right)^2$		+	0	+	
$ax^2 + bx + c$	Ş	signe de a	0	signe de a	

• Si
$$\Delta > 0$$

$$ax^{2} + bx + c = a(x - x_{1})(x - x_{2})$$

4

^{2.} $S = 11, P = 24, x^2 - 11x + 24 = 0$: les seules dimensions possibles sont 8 et 3.

avec
$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$.
Dans le cas ³ où $x_1 < x_2$, on a

x	$-\infty$	x_1		x_2	$+\infty$
$x-x_1$		0	+		+
$x-x_2$	_		_	0	+
$(x-x_1)(x-x_2)$	+	0	_	0	+
$a(x-x_1)(x-x_2)$	signe de a	0	signe de $(-a)$	0	signe de a

Théorème (Signe du trinôme)

- Si $\Delta < 0$, alors pour tout $x \in \mathbb{R}$, $ax^2 + bx + c$ est du signe de a.
- Si $\Delta = 0$, alors pour tout $x \neq -\frac{b}{2a}$, $ax^2 + bx + c$ est du signe de a.
- Si $\Delta > 0$, alors $ax^2 + bx + c$ est du signe de a à l'extérieur des racines, et du signe de (-a) entre les racines.

Exercice 8

- 1. Résoudre une inéquation du second degré : ressource 2910
- 2. Inéquation du second degré en trouvant une factorisation (sans calculer Δ): ressource 2923

I.6 Aspect graphique

Théorème

Soit f la fonction définie par $f(x) = ax^2 + bx + c$ avec $a \neq 0$.

La courbe représentative de f est un parabole.

Son sommet est le point $S\left(-\frac{b}{2a}; -\frac{\Delta}{4a}\right)$.

La droite d'équation $x = -\frac{b}{2a}$ (parallèle à (Oy)) est axe de symétrie de la courbe.

Lorsque a > 0 la parabole est tournée vers le haut.

Lorsque a < 0 la parabole est tournée vers le bas.

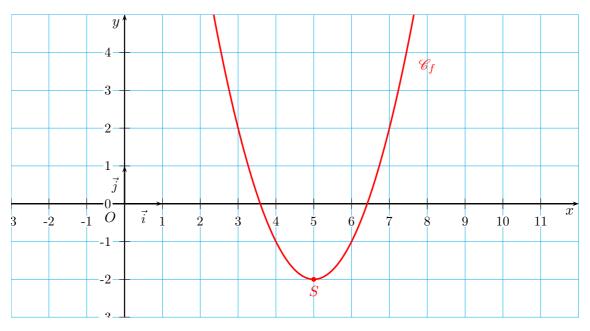
Exemple:

Soit f définie sur \mathbb{R} par $f(x) = x^2 - 10x + 23$.

Soit
$$f$$
 define sur \mathbb{R} par $f(x) = x^2 - 10x + 23$.
Comme $a = 1 > 0$, la parabole est tournée vers le haut.
 $x_S = -\frac{b}{2a} = \frac{10}{2} = 5$.
 $\Delta = b^2 - 4ac = 100 - 4 \times 23 = 8$.
 $y_S = \frac{-\Delta}{4a} = \frac{-8}{4} = -2$.
Le sommet de la parabole est le point $S(5; -2)$

Le sommet de la parabole est le point S(5; -2).

^{3.} sinon, il faut les échanger dans la première ligne du tableau



Remarque

- 1. On peut peut aussi trouver l'ordonnée du sommet en calculant $f\left(-\frac{b}{2a}\right)$. Sur l'exemple précédent, $y_S = f(5) = 25 50 + 23 = -2$.
- 2. Lien avec la forme canonique vue en seconde : Si l'on a une expression de la forme $f(x) = a(x-\alpha)^2 + \beta$, alors le sommet S a pour coordonnées $(\alpha; \beta)$.

Exercice 9

- 1. Déterminer les coordonnées du sommet de la parabole : ressource 3936
- 2. Indiquer la nature de l'extremum, sa valeur, et le nombre pour lequel il est atteint : ressource 3935

I.7 Algorithme de résolution de l'équation $ax^2 + bx + c = 0$

Algorithme TI-82, TI-83

- : Prompt A,B,C
- : $B \land 2-4AC \rightarrow D$
- : Disp "Delta=",D
- : If D>0
- : Then
- : Disp "Deux solutions"
- : Disp $(-B-\sqrt{(D)})/(2A)$ Frac, $(-B+\sqrt{(D)})/(2A)$ Frac
- : Else
- : If D=0
- : Then
- : Disp "Une solution"
- : Disp (-B)/(2A)►Frac
- : Else
- : Disp "Pas de solution"
- : End
- : End
- : Pause
- : Disp "sommet"
- : Disp -B/(2A)▶Frac, -D/(4A)▶Frac

On affiche de plus les coordonnées du sommet de la parabole.

```
Algorithme Casio
\text{"A="?} \to \text{ A}
"B=" ? \rightarrow B
"C=" ? \rightarrow C
\text{B}{\land}\text{2-4AC} \,\to\, \text{D}
"Delta="
D 🚄
If D>0
Then "Deux solutions"
(-B-\sqrt{(D)})/(2A)
(-B+\sqrt{(D)})/(2A)
Else
If D=0
Then
"Une solution"
(-B)/(2A)⊿
Else "Pas de solution"
IfEnd
IfEnd
"sommet"
-B/(2A)⊿
-D/(4A)⊿
```

I.8 Synthèse

$$f(x) = ax^2 + bx + c$$
, avec $a \neq 0$.
 $\Delta = b^2 - 4ac$.

$$\Delta = b^2 - 4ac$$
.
Sommet de la parabole $S(\alpha; \beta)$: $\alpha = -\frac{b}{2a}$, et $\beta = -\frac{\Delta}{4a} = f\left(\frac{-b}{2a}\right)$.

Discriminant	$\Delta < 0$	$\Delta = 0$	$\Delta > 0$
Équation $ax^2 + bx + c = 0$	Pas de solution dans $\mathbb R$	Une solution : $x_0 = -\frac{b}{2a}$	Deux solutions : $x_1 = \frac{-b - \sqrt{\Delta}}{2a}$ et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$
Factorisation de $ax^2 + bx + c$	Pas de factorisation	$a\left(x + \frac{b}{2a}\right)^2$	$a(x-x_1)(x-x_2)$
Allure si $a > 0$	x_0	x_0	x_1 x_2
Allure si $a < 0$			x_2 x_1
Signe de $ax^2 + bx + c$	Toujours du signe de a	Pour $x \neq -\frac{b}{2a}$, signe de a	Signe de a à l'extérieur des racines

II Complément

II.1 Fonctions polynômes

Définition

Une fonction f non nulle est une fonction polynôme s'il existe un entier $n \ge 0$ et des réels a_0, a_1, \ldots, a_n , avec $a_n \ne 0$, tels que pour tout $x \in \mathbb{R}$,

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

Le nombre entier n est le degré du polynôme.

Les nombres réels a_0, a_1, \ldots, a_n sont les coefficients du polynôme.

Remarque

La fonction nulle est une fonction polynôme. On convient que son degré est $-\infty$.

Exemple : Considérons le polynôme $P(x) = 3 - 2x^4 + 7x^8 - 3x^2$.

Son degré est ...

Le monôme en x^4 (terme de degré 4) est ...

Le terme de degré 1 est . . .

Le terme constant est ...

Le coefficent de x^2 est ...

Exercice 10

Soient f et g les polynômes donnés par $g(x) = (4x^2 - 7x + 3)(2x^3 - x)$ et $h(x) = x^2(2x^2 - 4)(4x^3 - 1)$.

Sans développer, déterminer

- le degré de g:
- le degré de h:
- le terme de plus haut degré de q:
- le terme de plus haut degré de h:
- le terme de plus bas degré de g:
- le terme de plus bas degré de h:

Définition

Le nombre $a \in \mathbb{R}$ est une racine du polynôme f lorsque f(a) = 0.

Exercice 11

Déterminer les racines du polynôme $x^3 - 4x$.

II.2 Identification de deux polynômes

Théorème

Deux fonctions polynômes de même degré sont égales si et seulement si leurs coefficients sont respectivement égaux.

Remarque

Deux fonctions polynômes de degré différents ne sont jamais égales.

Exercice 12 Soit
$$f$$
 définie par $f(x) = \frac{3x - 5}{x - 2}$.

Déterminer les réels a et b tels que pour tout $x \neq 2$, $f(x) = a + \frac{b}{x-2}$.

II.3 Factorisation de polynômes

Théorème (Factorisation)

Le nombre a est racine du polynôme f si et seulement si on peut mettre (x-a) en facteur dans l'expression de f(x).

Alors, on a

$$f(x) = (x - a)g(x)$$

Intérêt : Si deg(f) = n alors deg(g) = n - 1.

Exemple: $f(x) = 4x^3 - 3x^2 - 5x + 2$

On remarque que f(-1) = 0. Donc on peut factoriser f(x) par (x + 1).

Comme f est de degré 3, f(x) s'écrit $f(x) = (x+1)(ax^2 + bx + c)$.

Après identication des coefficients, on obtient $f(x) = (x+1)(4x^2 - 7x + 2)$.