# Chapitre 1 : Manipuler les nombres réels

#### Un peu d'histoire

- Apparition du zéro : vers 500 ans après J.-C.
- Nombres négatifs : ils sont connus en Chine au V<sup>e</sup> siècle av. J.-C., mais il faut attendre le XVI<sup>e</sup> siècle pour accepter les solutions négatives d'une équation (Albert Girard).
  - En France, le premier manuel qui traite des nombres négatifs date de 1886.
- Nombres décimaux : au XV<sup>e</sup> siècle, Al-Kashi élabore une écriture décimale des nombres décimaux, reprise et généralisée par Simon Stévin au XVI<sup>e</sup> siècle.
  Les nombre décimaux ne sont définitivement adoptés en France qu'en 1801 avec le système métrique.
- Nombres rationnels : 3000 ans av. J.-C., les Egyptiens utilisent des fractions avec 1 comme numérateur.
  - La notation avec un trait de fraction s'impose au XVII<sup>e</sup> siècle.
- Nombres irrationnels : Au VI<sup>e</sup> siècle av. J.-C., l'école pythagoricienne montre que  $\sqrt{2}$  est irrationnel.
- La construction rigoureuse de  $\mathbb{R}$  est due à Dedekind et Cantor (XIX<sup>e</sup> siècle).

# I Sous-ensembles de $\mathbb{R}$

#### Notations

- Pour exprimer que A est l'ensemble formé par les nombres -1, 2, 9 et 12, on utilise des accolades :  $A = \{-1, 2, 9, 12\}$ .
- Le nombre 2 appartient à A, on note  $2 \in A$ . 3 n'appartient pas à A, on note  $3 \notin A$ .
- Soit B l'ensemble  $B = \{2; 12\}$ . Comme tous les éléments de B sont dans A, on dit que B est inclus dans A et on note  $B \subset A$ .
- $\mathbb{N}$  est l'ensemble des nombres entiers naturels.  $\mathbb{N} = \{0; 1; 2; 3; \ldots; 10000; \ldots\}$ .
- $\mathbb{Z}$  est l'ensemble des entiers relatifs (positifs ou négatifs).

$$\mathbb{Z} = \{\ldots; -10\ 001; -10\ 000; \ldots; -1; 0; 1; 2; \ldots; 10\ 000; \ldots\}$$

# I.1 L'ensemble $\mathbb D$ des nombres décimaux

#### Définition

Un nombre est décimal s'il peut s'écrire sous la forme  $\frac{a}{10^n}$  où  $a \in \mathbb{Z}$  et  $n \in \mathbb{N}$ . L'ensemble des nombres décimaux se note  $\mathbb{D}$ .

Exemple: 
$$-2.34 \in \mathbb{D} \text{ car } -2,34 = \frac{-234}{10^2}.$$

#### Remarque

Tout entier relatif est un nombre décimal. En effet, si  $a \in \mathbb{Z}$ ,  $a = \frac{a}{10^0}$ . Ainsi  $\mathbb{Z} \subset \mathbb{D}$ .

#### Propriété (admise)

Un nombre est décimal ssi il peut s'écrire sous la forme  $\frac{a}{2^m \times 5^p}$  avec  $a \in \mathbb{Z}, m \in \mathbb{N}$ ,  $p \in \mathbb{N}$ .

Les nombres décimaux sont les nombres dont le développement décimal a un nombre fini de chiffres.

#### **I.2** L'ensemble Q des nombres rationnels

#### **Définition**

Un nombre rationnel est un nombre qui peut s'écrire sous la forme  $\frac{a}{b}$  où a et b sont des entiers relatifs  $(b \neq 0)$ . On note  $\mathbb{Q}$  l'ensemble des rationnels.

Exemple : 
$$\frac{2}{3} \in \mathbb{Q}$$
.

# Remarque

Tout nombre décimal est un nombre rationnel :  $\mathbb{D} \subset \mathbb{Q}$ .

#### Propriété

Tout nombre rationnel peut s'écrire sous la forme d'une fraction  $\frac{p}{s}$  irréductible, c'est-à-dire avec PGCD(p,q) = 1.

Tous les nombres rationnels ont un développement décimal périodique à partir d'un certain rang.

# Exemple:

les nombres suivants sont rationnnels. 
$$\frac{5}{4} = 1, 25 = 1, 2500000 \dots, \frac{1}{3} = 0, 3333 \dots, 6 = 6,000 \dots, \frac{19}{33} = 0.57575757 \dots$$

# Remarque

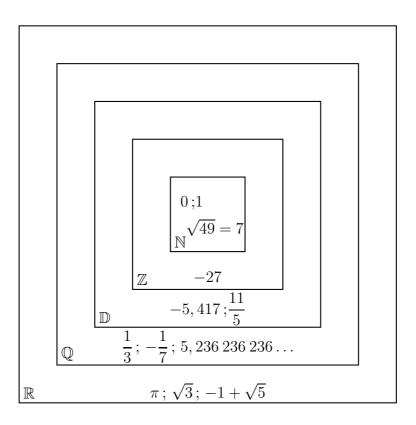
Parmi les nombres rationnels, il y a :

- les nombres décimaux qui ont un développement décimal fini.
- et les nombres rationnels qui ne sont pas décimaux. Ceux-ci ont un développement décimal infini mais avec une période.

Il existe des nombres réels qui ne sont pas rationnels (irrationnels), comme par exemple  $\sqrt{2}$  (diagonale d'un carré de côté 1) ou  $\pi$  (périmètre d'un cercle de diamètre

Les nombres irrationnels ont un développement décimal infini non périodique.

#### I.2.a Synthèse

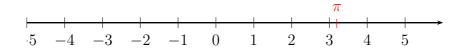


$$\mathbb{N}\subset\mathbb{Z}\subset\mathbb{D}\subset\mathbb{Q}\subset\mathbb{R}$$

# II Intervalles de l'ensemble $\mathbb R$ des nombres réels

# II.1 La droite graduée

L'ensemble  $\mathbb R$  des nombres réels est l'ensemble de tous les nombres connus en seconde. Il contient les rationnels,  $(\mathbb Q \subset \mathbb R)$ , et les nombres irrationnels comme par exemple  $\pi$  ou  $\sqrt{2}$ . On représente l'ensemble des nombres réels par une droite graduée. A chaque point de cette droite correspond un unique nombre réel, et réciproquement.

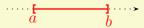


# II.2 Intervalles de $\mathbb{R}$

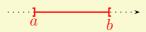
#### Définition (Intervalles bornés)

Soient a et b deux nombres réels, avec a < b.

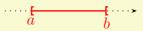
L'intervalle fermé [a;b] est l'ensemble des réels x tels que  $a \leq x \leq b$ .



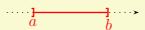
L'intervalle ouvert a; b est l'ensemble des réels a tels que a < x < b.



L'intervalle [a;b[ (fermé en a, ouvert en b) est l'ensemble des réels x tels que  $a \le x < b.$ 



L'intervalle ]a;b] (ouvert en a, fermé en b) est l'ensemble des réels x tels que  $a < x \le b$ .



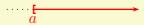
#### Remarque

Le symbole mathématique pour l'infini est  $\infty$ .

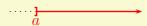
# Définition (Intervalles non bornés)

Soit  $a \in \mathbb{R}$ .

L'intervalle fermé  $[a; +\infty[$  est l'ensemble des réels x tels que  $x \geqslant a$ .



L'intervalle ouvert  $a; +\infty$  est l'ensemble des réels x tels que x > a.



L'intervalle fermé ]  $-\infty; a$ ] est l'ensemble des réels x tels que  $x \leq a$ .



L'intervalle ouvert  $]-\infty; a[$  est l'ensemble des réels x tels que x < a.



#### Exemple:

| Inégalité                    | Intervalle     | Représentation sur la                                  |  |
|------------------------------|----------------|--------------------------------------------------------|--|
|                              |                | droite graduée                                         |  |
| $-3 \leqslant x \leqslant 2$ | [-3; 2]        | $\begin{array}{c c} & & & & \\ & -3 & & 2 \end{array}$ |  |
| $-5 \leqslant x < 3$         | [-5; 3[        | -5 3                                                   |  |
| x < 2                        | $]-\infty;2[$  | 2                                                      |  |
| $x \geqslant -5$             | $[-5;+\infty[$ | -5                                                     |  |

# Remarque

On ouvre toujours les crochets pour  $+\infty$  et  $-\infty$ .

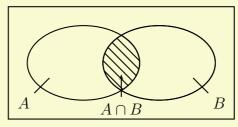
 $\mathbb{R}$  est un intervalle, il s'écrit  $\mathbb{R} = ]-\infty; +\infty[$ .

# II.3 Intersection et réunion

#### Définition

1. Intersection de deux ensembles.

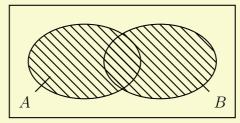
L'intersection de deux ensembles est l'ensemble des éléments communs aux deux ensembles.



$$x \in A \cap B \quad \Leftrightarrow \quad (x \in A \text{ et } x \in B)$$

2. Réunion de deux ensembles.

La réunion de deux ensembles est l'ensemble des éléments appartenant à au moins l'un des deux ensembles.



 $A \cup B$  est la partie hachurée.

$$x \in A \cup B \quad \Leftrightarrow \quad (x \in A \text{ ou } x \in B)$$

# Exercice 1

Traduire à l'aide d'intervalles les conditions suivantes :

- a) x > 1
- b)  $x < 2 \text{ et } x \ge -5$
- c) x < 0 ou  $x \leqslant 2$
- d)  $-3 < x \le 1$

# Exercice 2

Écrire plus simplement les ensembles suivants :

- a)  $] 4; 5[ \cap [1; 10].$
- b)  $[-\infty; 2[\ \cup\ ]-1; 3]$
- c)  $[1;4] \cap [6;7]$
- d)  $]-\infty;-3] \cup ]-5;+\infty[$
- e)  $[4; 12[ \cup ] 3; 15[$

# Remarque

Notations particulières :

- $\mathbb{R}_+ = [0; +\infty[.$
- $\mathbb{R}_{-}=]-\infty;0].$
- $\mathbb{R}_{+}^{*}=]0;+\infty[.]$
- $\mathbb{R}_{-}^{*} = ]-\infty; 0[.$   $\mathbb{R}^{*} = ]-\infty; 0[\cup]0; +\infty[.$

# III Encadrement et approximation de réels par des nombres décimaux

#### **Définition**

Un encadrement décimal d'un nombre réel x est une écriture  $a\leqslant x\leqslant b$  où a et b sont des nombres décimaux.

L'amplitude de l'encadrement est la différence b-a.

# Exemple:

 $\sqrt{3} \approx 1,732\,051.$ 

Un encadrement décimal de  $\sqrt{3}$  d'amplitude  $10^{-2}$  est  $1,73 < \sqrt{3} < 1,74$ .

#### **Définition**

Soit  $n \in \mathbb{N}$ . L'arrondi à  $10^{-n}$  près du réel x est le nombre décimal à n chiffres après la virgule le plus proche de x.

# Exemple:

 $\pi \approx 3,141\,592\,654.$ 

L'arrondi de  $\pi$  à  $10^{-2}$  est . . . .

L'arrondi de  $\pi$  à  $10^{-3}$  est . . . .

# IV Valeur absolue

# IV.1 Valeur absolue d'un réel

#### Définition

Soit x un nombre réel. Notons M l'image de x sur la droite graduée réelle. La valeur absolue de x, notée |x|, est la distance OM, aussi appelée distance de x à 0.

$$|x| = d(x;0)$$

Exemple: |5| = 5. |-3| = 3

# Propriété

Si  $x \ge 0$  alors |x| = x.

Si x < 0 alors |x| = -x.

#### Remarque

Une valeur absolue est toujours positive ou nulle.

Deux nombres opposés ont la même valeur absolue : pour tout  $x \in \mathbb{R}$ , |x| = |-x|.

#### Exercice 3

Calculer:

1. 
$$a = |4 - 7|$$

2. 
$$b = |7 - 4|$$

3. 
$$c = 4 - 3|1 - 8|$$

4. 
$$d = 2 \times |-3| + \frac{1}{2} \times |5|$$
.

# IV.2 Distance et valeur absolue

### Propriété

Soient a et b deux nombres réels d'images respectives A et B sur l'axe réel. Alors,

$$AB = d(a; b) = |b - a| = |a - b|$$

#### Remarque

Par abus de langage, on parle parfois de la distance entre les réels a et b. Alors, d(a;b)=|a-b|.

#### Remarque

Soient a un nombre réel et r > 0.

L'ensemble des réels x tels que  $|x-a| \le r$  est l'intervalle [a-r;a+r].

# Exercice 4

— Raisonnement et inégalités

ressource 3140 ressource 3140

— Ou/et, réunion/intersection

ressource 3154 ressource 3335

ressource 3473 (réunion intersection sur des intervalles)

# V Exercices corrigés

#### Exercice 5

1. Recopier et compléter le tableau suivant :

| Inégalité                                 | Intervalle ou<br>réunion d'intervalles | Représentation sur la droite graduée                 |
|-------------------------------------------|----------------------------------------|------------------------------------------------------|
| $-3\leqslant x\leqslant 2$                | [-3; 2]                                | $-3$ $2$ $\longrightarrow$                           |
| x < 2                                     | $]-\infty;2[$                          | 0 2                                                  |
| x > 1                                     | $]1;+\infty [$                         | 0 1                                                  |
| $x\geqslant -2$                           | $[-2;+\infty[$                         | $\begin{array}{ccc} & & & \\ & -2 & 0 & \end{array}$ |
| $-5 \leqslant x < 3$                      | [-5; 3[                                | ···· <del>t</del> 5 3                                |
| x < -3 ou $x > 1$                         | $]-\infty;-3[\ \cup\ ]1;+\infty[$      | -3 $1$                                               |
| $x\leqslant 4 	ext{ ou } x>7$             | $]-\infty;4]\cup]7;+\infty[$           | <u>1</u> 7                                           |
| x < 2 ou $x > 5$                          | $]-\infty;2[\;\cup\;]5;+\infty[$       | <u> </u>                                             |
| -2 < x < 5                                | ] - 2; 5[                              | -2 5                                                 |
| $x \leqslant 3 \text{ et } x \geqslant 0$ | [0;3]                                  | 0 3                                                  |

2. On considère les intervalles  $I=]-\infty; 5[$  et J=[-1;9]. Déterminer  $I\ \cap\ J$  et  $I\ \cup\ J.$   $I\ \cap\ J=[-1;5[.$   $I\ \cup\ J=]-\infty; 9].$ 

$$I \cap J = [-1; 5[.$$

$$I \cup J = ]-\infty; 9]$$