Devoir de mathématiques nº 2

Sujet 3

Exercice 1 (1 point)

Donner la définition de deux événements A et B indépendants.

Exercice 2 (7 points)

Soit f la fonction définie sur \mathbb{R} par $f(x) = -x^2 + 4x - 3$.

On appelle \mathcal{P} sa courbe représentative dans un repère orthonormé $(O; \overrightarrow{i}; \overrightarrow{j})$.

- 1. Déterminer les coordonnées des points d'intersection de \mathcal{P} avec l'axe des abscisses.
- 2. Étudier le signe de f sur \mathbb{R} . Justifier.
- 3. Dresser le tableau de variation de f. Justifier.
- 4. Soit (d) la droite d'équation y = 2x 3. Étudier la position relative de la parabole \mathcal{P} et de la droite (d).
- 5. Pour tout a réel, on note D_a la droite d'équation y = ax. Déterminer les valeurs de a pour lesquelles D_a et \mathcal{P} n'ont pas de point d'intersection.

Exercice 3 (2 points)

Déterminer l'expression de la fonction f du second degré dont la parabole a pour sommet le point S(2;-5) et passe par le point A(6;-9).

Exercice 4 (2 points)

Résoudre dans \mathbb{R} l'équation suivante : $x^4 + 7x^2 - 8 = 0$.

Exercice 5 (5 points)

Les résultats seront donnés sous forme décimale en arrondissant à 10^{-4} . Dans un pays, il y a 2% de la population contaminée par un virus. On dispose d'un test de dépistage de ce virus qui a les propriétés suivantes :

- La probabilité qu'une personne contaminée ait un test positif est de 0,99 (sensibilité du test).
- La probabilité qu'une personne non contaminée ait un test négatif est de 0,97 (spécificité du test).

On fait passer un test à une personne choisie au hasard dans cette population. On note V l'évènement « la personne est contaminée par le virus » et T l'évènement « le test est positif ». \overline{V} et \overline{T} désignent respectivement les évènements contraires de V et T.

- 1. (a) Traduire la situation à l'aide d'un arbre de probabilités.
 - (b) En déduire la probabilité de l'évènement $V \cap T$.
- 2. Déterminer P(T). Justifier.
- 3. (a) Justifier par un calcul la phrase : « Si le test est positif, il n'y a qu'environ 40 % de « chances » que la personne soit contaminée ».
 - (b) Déterminer la probabilité qu'une personne ne soit pas contaminée par le virus sachant que son test est négatif.

Exercice 6 (3 points)

On étudie un nouveau logiciel qui est censé filtrer les messages indésirables (ou spams) sur une messagerie électronique.

Les concepteurs l'ont testé pour $1\,000$ messages reçus et ont observé que :

- . 70% des messages reçus sont des spams
- . 95% des spams sont éliminés
- . 2% des messages bienvenus sont éliminés
- 1. Compléter le tableau d'effectifs suivant (aucune justification n'est attendue) :

	Spams	Messages bienvenus	Total
Messages éliminés			
Messages conservés			
Total			1 000

- 2. On choisit un message au hasard. Tous les messages ont la même probabilité d'être choisis. On considère les événements suivants :
 - . S : « le message est un spam »
 - . E : « le message est éliminé »

On notera respectivement \overline{S} et \overline{E} leurs contraires.

- (a) Donner sans justification P(S) et P(E), $P(S \cap E)$, et $P_S(\overline{E})$.
- (b) S et E sont-ils indépendants? Justifier.

Exercice 7 (bonus, 1 point)

Soient A et B des événements tels que $P(A) \neq 0, P(B) \neq 0, P(A) \neq 1,$ et $P(B) \neq 1.$

Montrer que si A et B sont indépendants, alors \overline{A} et B sont aussi indépendants.

Devoir de mathématiques nº 2 $\,$

Sujet 4

Exercice 8 (1 point)

Énoncer la formule des probabilités totales associée à une partition A_1 , A_2, \ldots, A_n de l'univers.

Exercice 9 (7 points)

Soit f la fonction définie sur \mathbb{R} par $f(x) = x^2 - 4x + 3$.

On appelle \mathcal{P} sa courbe représentative dans un repère orthonormé $(O; \overrightarrow{i}; \overrightarrow{j})$.

- 1. Déterminer les coordonnées des points d'intersection de $\mathcal P$ avec l'axe des abscisses.
- 2. Étudier le signe de f sur \mathbb{R} . Justifier.
- 3. Dresser le tableau de variation de f. Justifier.
- 4. Soit (d) la droite d'équation y = -2x + 3. Étudier la position relative de la parabole \mathcal{P} et de la droite (d).
- 5. Pour tout a réel, on note D_a la droite d'équation y=ax. Déterminer les valeurs de a pour lesquelles D_a et \mathcal{P} n'ont pas de point d'intersection.

Exercice 10 (2 points)

Déterminer l'expression de la fonction f du second degré dont la parabole a pour sommet le point S(-3;-1) et passe par le point A(1;7).

Exercice 11 (2 points)

Résoudre dans \mathbb{R} l'équation suivante : $2x^4 + 5x^2 - 3 = 0$.

Exercice 12 (5 points)

Les résultats seront donnés sous forme décimale en arrondissant à 10^{-4} . Dans un pays, il y a $6\,\%$ de la population contaminée par un virus. On dispose d'un test de dépistage de ce virus qui a les propriétés suivantes :

- La probabilité qu'une personne contaminée ait un test positif est de 0,98 (sensibilité du test).
- La probabilité qu'une personne non contaminée ait un test négatif est de 0,99 (spécificité du test).

On fait passer un test à une personne choisie au hasard dans cette population. On note V l'évènement « la personne est contaminée par le virus » et T l'évènement « le test est positif ». \overline{V} et \overline{T} désignent respectivement les évènements contraires de V et T.

- 1. (a) Traduire la situation à l'aide d'un arbre de probabilités.
 - (b) En déduire la probabilité de l'évènement $V \cap T$.
- 2. Déterminer la probabilité que le test soit positif.
- 3. (a) L'affirmation suivante est-elle vraie ou fausse? Justifier. « Si le test est positif, il n'y a qu'environ 40 % de « chances » que la personne soit contaminée ».
 - (b) Déterminer la probabilité qu'une personne ne soit pas contaminée par le virus sachant que son test est négatif.

Exercice 13 (3 points)

On étudie un nouveau logiciel qui est censé filtrer les messages indésirables (ou spams) sur une messagerie électronique.

Les concepteurs l'ont testé pour $1\,000$ messages reçus et ont observé que :

- 75% des messages reçus sont des spams
- 96% des spams sont éliminés
- 4% des messages bienvenus sont éliminés
- 1. Compléter le tableau d'effectifs suivant (aucune justification n'est attendue) :

	Spams	Messages bienvenus	Total
Messages éliminés			
Messages conservés			
Total			1 000

- 2. On choisit un message au hasard. Tous les messages ont la même probabilité d'être choisis. On considère les événements suivants :
 - . S : « le message est un spam »
 - . E : « le message est éliminé »

On notera respectivement \overline{S} et \overline{E} leurs contraires.

- (a) Donner sans justification P(S) et P(E), $P(S \cap E)$, et $P_S(\overline{E})$.
- (b) S et E sont-ils indépendants? Justifier.

Exercice 14 (bonus, 1 point)

Soient A et B des événements tels que $P(A) \neq 0$, $P(B) \neq 0$, $P(A) \neq 1$, et $P(B) \neq 1$.

Montrer que si A et B sont indépendants, alors \overline{A} et B sont aussi indépendants.