1re G. Correction du dm1

Exercice 1

Les affirmations suivantes sont-elles vraies ou fausses? Justifier.

- 1. Pour tout réel x, $-2(x-1)^2 = 2x^2 4x 2$. L'affirmation est fausse : l'égalité n'est pas vérifiée pour tous les réels. En effet, en prenant x = 1, le premier membre vaut 0 et le deuxième vaut -4.
- 2. Il existe un réel x tel que $-2(x-1)^2 = 2x^2 4x 2$. L'affirmation est vraie : l'égalité est vérifiée pour x = 0.

Exercice 2

1. Pour tout réel x, on a : d'une part

$$(x-1)x(x+1)(x+2) + 1 = (x-1)(x+1)x(x+2) + 1$$
$$= (x^2-1)(x^2+2x) + 1$$
$$= x^4 + 2x^3 - x^2 - 2x + 1$$

d'autre part

$$(x^{2} + x - 1)^{2} = (x^{2} + x - 1)(x^{2} + x - 1)$$

$$= x^{4} + x^{3} - x^{2} + x^{3} + x^{2} - x - x^{2} - x + 1$$

$$= x^{4} + 2x^{3} - x^{2} - 2x + 1$$

On en déduit que, pour tout réel x, on a :

$$(x-1)x(x+1)(x+2) + 1 = (x^2 + x - 1)^2.$$

2. En utilisant l'égalité précédente pour x=10, on obtient : $9 \times 10 \times 11 \times 12 + 1 = (10^2 + 10 - 1)^2 = 109^2$. On en déduit que $9 \times 10 \times 11 \times 12 + 1$ est le carré de 109.

Exercice 3

Soit f la fonction définie sur \mathbb{R} par $f(x)=-x^2-2x+2$. On note \mathscr{C} sa courbe représentative dans un repère du plan.

Soit (d) la droite d'équation y = -x - 4.

- 1. Tracer dans le repère ci-contre la courbe de f et la droite (d). Pour la courbe de f, on s'aidera d'un tableau de valeurs avec la calculatrice.
- 2. Montrer que pour tout $x \in \mathbb{R}$, f(x) (-x 4) = (x + 3)(2 x). D'une part, $f(x) - (-x - 4) = -x^2 - 2x + 2 - (-x - 4) = -x^2 - 2x + 2 + x + 4 = -x^2 - x + 6.$

D'autre part, $(x+3)(2-x) = -x^2 - x + 6$. Donc pour tout $x \in \mathbb{R}$, f(x) - (-x - 4) = (x + 3)(2 - x).

3. (a) Résoudre l'équation f(x) - (-x - 4) = 0. f(x) - (-x - 4) = 0 ssi f(x) = -x - 4 ssi (x+3)(x-2) = 0 ssi (x+3 = 0) ou x-2=0 ssi (x=-3) ou x=2. Les solutions sont x=-3 et x=-3. (b) En déduire les coordonnées des points d'intersection de $\mathscr C$ avec la droite (d).

On remplace
$$x$$
 par -3 et 2 dans $y = -x - 4$ (ou dans $f(x)$).
 $-(-3) - 4 = -1$, et $-2 - 4 = -6$.
 \mathscr{C} et d se coupent en $A(-3; -1)$ et $B(2; -6)$.

4. (a) Dresser le tableau de signe de (x+3)(2-x). Valeurs clés :

$$x + 3 = 0$$
 ssi $x = -3$, et $2 - x = 0$ ssi $x = 2$.

x	$-\infty$		-3		2		$+\infty$
x+3		_	0	+		+	
2-x		+		+	0	_	
f(x) - (-x - 4)		_	0	+	0	_	

(b) En déduire la position relative de $\mathscr C$ et (d). On en déduit que lorsque $x\in]-\infty; -3[\cup]2; +\infty[$, f(x)<-x-4. Donc sur $]-\infty; -3[\cup]2; +\infty[$, $\mathscr C_f$ est en-dessous de (d). Lorsque $x\in]-3; 2[$, f(x)>-x-4. Donc $\mathscr C_f$ est au-dessus de (d) sur]-3; 2[. Enfin f(x)=-x-4 ssi x=-3 ou x=2, donc $\mathscr C_f$ et (d) se coupent aux points d'abscisses -3 et 2.

On pourra vérifier la cohérence de ces résultats (q3 et q4) avec le graphique.

