1G. Correction du devoir nº 8.

Exercice 1 (4 points)

On considère la suite (u_n) définie pour tout entier $n \in \mathbb{N}$ par $u_n = 45n - 1 + \sqrt{n}$.

- 1. Vérifier que pour tout $n \in \mathbb{N}$, $u_{n+1} u_n = 45 + \sqrt{n+1} \sqrt{n}$. $u_{n+1} u_n = 45(n+1) 1 + \sqrt{n+1} (45n-1+\sqrt{n})$ = $45n + 45 - 1 + \sqrt{n+1} - 45n + 1 - \sqrt{n} = 45 + \sqrt{n+1} - \sqrt{n}$.
- 2. En déduire que (u_n) est croissante.

Comme la fonction racine carrée est strictement croissante sur $[0; +\infty[$, pour tout $n \in \mathbb{N}, \sqrt{n+1} - \sqrt{n} > 0$, et en ajoutant 45>0, il vient $u_{n+1} - u_n > 0$.

Donc (u_n) est strictement croissante.

- 3. On admet que (u_n) diverge vers $+\infty$.
 - (a) Compléter la fonction Python qui détermine le plus petit entier n tel que $u_n \ge 10^4$.

from math import sqrt
def seuil():
 n=0
 while 45*n-1+sqrt(n)<10**4 :
 n=n+1
 return(n)</pre>

4. Peut-on affirmer que pour tout entier $n \ge 285$, $u_n \ge 10^4$? Justifier. On obtient n = 222 en faisant tourner l'algorithme.

Avec la calculatrice, il suffit d'observer que $u_{222} \ge 10^4$.

Ensuite, comme (u_n) est croissante, pour tout $n \ge 222$, $u_n \ge u_{222} \ge 10^4$, donc $u_n \ge 10^4$.

Donc l'affirmation est vraie.

Exercice 2 (7 points)

Soit f la fonction définie sur [-10; 10] par $f(x) = x^3 - 3x^2 - 9x + 1$.

1. (a) Calculer f'(x), la dérivée de f.

f est une fonction polynôme, elle est dérivable sur $\mathbb{R},$ donc sur [-10;10].

Pour tout
$$x \in [-10; 10]$$
, $f'(x) = 3x^2 - 6x - 9$.

(b) Déterminer le tableau de variation de f sur [-10; 10]. On étudie le signe de $f'(x) = 3x^2 - 6x - 9$.

$$\Delta = b^2 - 4ac = 36 + 4 \times 3 \times 9 = 144 = 12^2 > 0.$$

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{6 - 12}{6} = -1.$$

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{6 + 12}{6} = 3.$$

Le trinôme f'(x) prend le signe de a à l'extérieur des racines (ici a=3>0).

x	-10		-1		3		10
f'(x)		+	0	_	0	+	
f(x)	-1209	/	6	\	-26	/	611

On trouve les images avec la calculatrice.

(c) En déduire un encadrement de f(x) lorsque x appartient à [-10; 10].

D'après la question précédente, sur [-10; 10], le minimum de f est -1209 et le maximum est 611.

Donc pour tout
$$x \in [-10; 10], -1209 \le f(x) \le 611.$$

2. Existe-t-il des points de \mathcal{C} où la tangente est parallèle à la droite d'équation y=-9x+2? Dans l'affirmative, préciser les coordonnées de ces points.

La tangente T au point d'abscisse x est parallèle à la droite d'équation y = -9x + 2 ssi T a pour coefficient directeur -9 ssi f'(x) = -9 ssi $3x^2 - 6x = 0$ ssi x(3x - 6) = 0 ssi (x = 0) ou x = 2.

$$f(0) = 1$$
 et $f(2) = -21$.

Il y a deux points en lesquels la tangente a pour coefficient directeur —9 et est donc parallèle à cette droite.

Ce sont les points A(0;1) et B(2;-21).

3. Déterminer une équation de la tangente $\mathcal T$ à la courbe $\mathcal C$ de f au point d'abscisse 1.

$$y = f'(1)(x - 1) + f(1).$$

$$f(1) = 1 - 3 - 9 + 1 = -10.$$

$$f'(1) = 3 - 6 - 9 = -12.$$
D'où $y = -12(x - 1) - 10 = -12x + 2.$

1

Une équation de T_1 est y = -12x + 2.

Exercice 3 (5 points)

Le but de l'exercice est de démontrer que tous les rectangles d'aire égale à 100 ont un périmètre supérieur ou égal à 40.

1. On note x > 0 la mesure d'un côté d'un rectangle d'aire 100. Quelle est l'autre dimension du rectangle?

Notons y l'autre dimesion. L'aire du rectangle est $x \times y$.

Donc
$$xy = 100$$
, puis $y = \frac{100}{x}$.

L'autre dimension du rectangle est $\frac{100}{x}$.

2. Montrer que le périmètre du rectangle est $P(x) = 2x + \frac{200}{x}$.

Le périmètre est donc
$$P(x) = 2x + 2y = 2\left(x + \frac{100}{x}\right) = 2x + \frac{200}{x}.$$

3. Calculer P'(x) pour tout x > 0.

Pour tout x > 0,

$$P'(x) = 2 - \frac{200}{x^2} = \frac{2x^2 - 200}{x^2} = \frac{2(x - 10)(x + 10)}{x^2}.$$

4. Déterminer le tableau de variation de P sur $]0; +\infty[$. Comme on travaille sur l'intervalle $]0; +\infty[$, x > 0,

et donc x + 10 > 0.

Et comme $x^2 > 0$ et 2 > 0, P'(x) a le même signe que x - 10.

x	0		10		$+\infty$
P'(x)		_	0	+	
P(x)			40	/	

$$P(10) = 2 \times 10 + \frac{200}{10} = 40.$$

5. Que peut-on conclure?

D'après les variations, le périmètre est au minimum de 40, et ce minimum est obtenu lorsque x=10.

Note : le rectangle est alors un carré puisque $y = \frac{100}{x} = 10$.

Exercice 4 (4 points + 1 bonus)

Les questions 1 et 2 sont indépendantes.

1. On lâche une balle d'une hauteur de 2 m.

On admet que la hauteur de chaque rebond diminue de 38 % par rapport au précédent.

On pose $u_0 = 2$ et pour tout $n \ge 1$ on note u_n la hauteur du $n^{\text{ième}}$ rebond.

(a) Vérifier que $u_1 = 1, 24$.

Diminuer de 38 % revient à multiplier par 1 - 0, 38 = 0, 62. $u_1 = 2 \times 0, 62 = 1, 24$.

(b) Écrire une fonction Python qui renvoie le plus petit entier n tel que $u_n < 0,001$.

On a $u_0=2$ et $u_{n+1}=0,62u_n$ (suite géométrique, avec q=0,62).

```
def seuil():
    n=0
    u=2
    while u>=0.001:
        n=n+1
        u=u*0.62
    return(n)
```

(c) On considère que la balle devient immobile dès que la hauteur du rebond devient inférieure à 1 mm.

Combien y a t-il eu de rebonds? Justifier.

La suite est décroissante (car c'est une suite géométrique avec $u_0 > 0$ et 0 < q < 1). 1 mm =0,001 m.

Avec la calculatrice, on obtient $u_{15} \approx 0,0015 > 10^{-3}$, et $u_{16} \approx 0,00095 < 10^{-3}$.

Avec le postulat posé, il y a donc eu 15 rebonds.

2. Bonus.

On pose $V_0 = 4$ et pour tout $n \in \mathbb{N}$, $V_{n+1} = 3V_n + 5$.

Écrire une fonction Python d'argument n (n entier naturel non nul) qui renvoie $S_n = V_0 + V_1 + \cdots + V_n$.

def somme(n):