NOM:

Lundi 25/11/2019

Prénom:

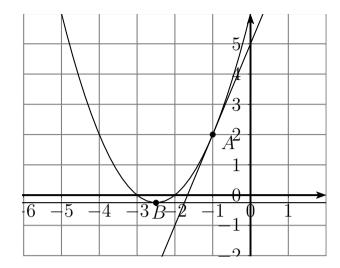
Interrogation n° 4 Sujet 1

Exercice 1 (questions de cours, 3 points)

- 1. Compléter les formules de dérivées :
 - (a) Si pour tout $x \in \mathbb{R}$, $f(x) = \frac{1}{4}$, alors $f'(x) = \dots$
 - (b) Si pour tout $x \in \mathbb{R}$, $f(x) = x^3$, alors $f'(x) = \dots$
 - (c) Si pour tout $x \in \mathbb{R}$, f(x) = 7x 1, alors $f'(x) = \dots$
- (d) Si pour tout $x \neq 0$, $f(x) = \frac{1}{x}$, alors $f'(x) = \dots$
- 2. Soient u et v sont deux fonctions dérivables sur I.
 - (a) La fonction $(u \times v)$ est dérivable sur I et $(u \times v)' = \dots$
 - (b) Si de plus v ne s'annule pas sur I, $\left(\frac{u}{v}\right)$ est dérivable sur I et $\left(\frac{u}{v}\right)' = \dots$
- 3. Si f est dérivable en un réel a, une équation de la tangente à la courbe de f au point d'abscisse a est \dots

Exercice 2 (2 points)

On donne ci-dessous la courbe d'une fonction f dérivable sur \mathbb{R} , et deux tangentes à cette courbe. La tangente à la courbe au point B(-2,5;-0,25) est parallèle à l'axe des abscisses.



- 1. Déterminer graphiquement mais en justifiant f'(-2,5) et f'(-1).
- 2. On admet désormais que pour tout $x \in \mathbb{R}$,

$$f(x) = x^2 + 5x + 6.$$

- (a) Déterminer f'(x).
- (b) Retrouver par le calcul les valeurs de f'(-2, 5) et f'(-1).

Exercice 3 (5 points)

Calculer l'expression de la dérivée des fonctions suivantes.

- 1. f est définie sur \mathbb{R} par $f(x) = x^4 2x^3 + 1$.
- 2. f est définie sur $]0; +\infty[$ par $f(x) = (x^2 1)\sqrt{x}$.
- 3. f est définie sur $]4; +\infty[$ par $f(x) = \frac{5}{8-2x}$.
- 4. f est définie sur $]5; +\infty[$ par $f(x) = \frac{x^2 3x}{x 5}.$
- 5. f est définie sur $]-\infty; 3[$ par $f(x)=\sqrt{6-2x}.$

NOM:

Lundi 25/11/2019

Prénom:

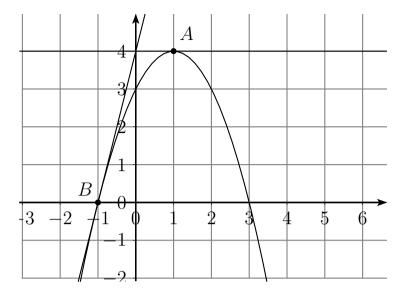
Interrogation n° 4 Sujet 2

Exercice 4 (questions de cours, 3 points)

- 1. Compléter les formules de dérivées :
 - (a) Si pour tout $x \in \mathbb{R}$, si f(x) = -1, alors $f'(x) = \dots$
 - (b) Si pour tout $x \in \mathbb{R}$, si f(x) = x, alors $f'(x) = \dots$
 - (c) Si pour tout x > 0, si $f(x) = \sqrt{x}$, $f'(x) = \dots$
 - (d) Si pour tout $x \in \mathbb{R}$, si $f(x) = x^6$, alors $f'(x) = \dots$
- 2. Soient u et v sont deux fonctions dérivables sur I.
 - (a) Si k une constante réelle, alors $(k \times u)$ est dérivable sur I et $(k \times u)' = \dots$
 - (b) Si de plus v ne s'annule pas sur I, alors $\left(\frac{1}{v}\right)$ est dérivable sur I et $\left(\frac{1}{v}\right)' = \dots$
- 3. Si f est dérivable en un réel a, une équation de la tangente à la courbe de f au point d'abscisse a est \dots

Exercice 5 (3 points)

On donne ci-dessous la courbe d'une fonction f dérivable sur \mathbb{R} , et deux tangentes à cette courbe. La tangente à la courbe au point A est parallèle à l'axe des abscisses.



- 1. Déterminer graphiquement f'(-1) et f'(1). Justifier.
- 2. On admet désormais que pour tout $x \in \mathbb{R}$,

$$f(x) = -x^2 + 2x + 3.$$

- (a) Déterminer f'(x).
- (b) Retrouver par le calcul les valeurs de f'(-1) et f'(1).

Exercice 6 (5 points)

Calculer l'expression de la dérivée des fonctions suivantes.

- 1. f est définie sur \mathbb{R} par $f(x) = -x^5 + 8x^3 + 2x 4$.
- 2. f est définie sur $]0; +\infty[$ par $f(x) = (3-2x)\sqrt{x}$.
- 3. f est définie sur $]3; +\infty[$ par $f(x) = \frac{11}{x^2 3x}$.
- 4. f est définie sur $]-9;+\infty[$ par $f(x)=\frac{5-x}{x+9}.$
- 5. f est définie sur \mathbb{R} par $f(x) = (5x 6)^3$.