NOM:

Prénom:

CRSA1. Interrogation n° 2.

Exercice 1 (cours, 1 point)

Compléter la propriété.

Soit
$$f(x) = ax^2 + bx + c$$
, avec $a \neq 0$

Posons $\Delta = \dots$

- Si, alors l'équation f(x) = 0 n'a pas de solution réelle.
- Si, alors l'équation f(x) = 0 admet une seule solution qui est $x_0 = \dots$

La forme factorisée de f(x) est alors

• Si, alors l'équation f(x) = 0 admet deux solutions qui sont $x_1 = \dots$ et $x_2 = \dots$

Exercice 2 (4 points)

Résoudre dans \mathbb{R} les équations suivantes :

- 1. $2x^2 9x 11 = 0$
- $2. -2x^2 + 3x 1 = -5x + 7$
- 3. $x^2 + 2x + 7 = 0$

Exercice 3 (3 points)

Soit f la fonction définie sur \mathbb{R} par $f(x) = x^2 - 4x + 7$.

- 1. Justifier par le calcul que le sommet de la parabole est le point S(2;3).
- 2. En déduire le tableau de variation de f. Justifier.

Exercice 4 (2 points)

Soit f la fonction définie sur \mathbb{R} par $f(x) = 3x^2 - x - 2$.

- 1. Vérifier que les solutions de l'équation f(x) = 0 sont 1 et $-\frac{2}{3}$.
- 2. En déduire une forme factorisée de f(x). Justifier.

Exercice 5 (Bonus, 1 point)

Déterminer l'expression de la fonction f polynôme du second degré dont les racines sont 2 et 5 et dont la courbe passe par le point A(10;8).

NOM:

Prénom:

CRSA1. Interrogation n° 2.

Exercice 1 (cours, 1 point)

Compléter la propriété.

Soit
$$f(x) = ax^2 + bx + c$$
, avec $a \neq 0$

Posons $\Delta = \dots$

- Si, alors l'équation f(x) = 0 n'a pas de solution réelle.
- Si, alors l'équation f(x) = 0 admet une seule solution qui est $x_0 = \dots$

La forme factorisée de f(x) est alors

• Si, alors l'équation f(x) = 0 admet deux solutions qui sont $x_1 = \dots$ et $x_2 = \dots$

Exercice 2 (4 points)

Résoudre dans \mathbb{R} les équations suivantes :

1.
$$2x^2 - 9x - 11 = 0$$

2.
$$-2x^2 + 3x - 1 = -5x + 7$$

3.
$$x^2 + 2x + 7 = 0$$

Exercice 3 (3 points)

Soit f la fonction définie sur \mathbb{R} par $f(x) = x^2 - 4x + 7$.

- 1. Justifier par le calcul que le sommet de la parabole est le point S(2;3).
- 2. En déduire le tableau de variation de f. Justifier.

Exercice 4 (2 points)

Soit f la fonction définie sur \mathbb{R} par $f(x) = 3x^2 - x - 2$.

- 1. Vérifier que les solutions de l'équation f(x) = 0 sont 1 et $-\frac{2}{3}$.
- 2. En déduire une forme factorisée de f(x). Justifier.

Exercice 5 (Bonus, 1 point)

Déterminer l'expression de la fonction f polynôme du second degré dont les racines sont 2 et 5 et dont la courbe passe par le point A(10;8).

NOM:

Prénom:

CRSA1. Interrogation n° 2. Sujet 2

Exercice 1 (cours, 1 point)

Compléter la propriété.

Soit $f(x) = ax^2 + bx + c$, avec $a \neq 0$

Posons $\Delta = \dots$

- Si, alors l'équation f(x) = 0 n'a pas de solution réelle.
- Si , alors l'équation f(x) = 0 admet une seule solution qui est $x_0 = \dots$

La forme factorisée de f(x) est alors

• Si, alors l'équation f(x) = 0 admet deux solutions qui sont $x_1 = \ldots$ et $x_2 = \ldots$.

La forme factorisée de f(x) est alors

Exercice 2 (4 points)

Résoudre dans $\mathbb R$ les équations suivantes :

- 1. $x^2 9x + 8 = 0$
- $2. -4x^2 + 4x 1 = 0$
- 3. $x^2 + x = -6$

Exercice 3 (3 points)

Soit f la fonction définie sur \mathbb{R} par $f(x) = -x^2 + 4x + 7$.

- 1. Justifier par le calcul que le sommet de la parabole est le point S(2;11).
- 2. En déduire le tableau de variation de f. Justifier.

Exercice 4 (2 points)

Soit f la fonction définie sur \mathbb{R} par $f(x) = x^2 - 5x + 4$.

- 1. Vérifier que les solutions de l'équation f(x) = 0 sont 1 et 4.
- 2. En déduire une forme factorisée de f(x). Justifier.

Exercice 5 (Bonus, 1 point)

Déterminer l'expression de la fonction f polynôme du second degré dont les racines sont -2 et 3 et dont la courbe passe par le point A(2;-1).

NOM:

Prénom:

CRSA1. Interrogation no 2. Sujet 2

Exercice 1 (cours, 1 point)

Compléter la propriété.

Soit $f(x) = ax^2 + bx + c$, avec $a \neq 0$

Posons $\Delta = \dots$

- Si, alors l'équation f(x) = 0 n'a pas de solution réelle.
- Si, alors l'équation f(x) = 0 admet une seule solution qui est $x_0 = \dots$

La forme factorisée de f(x) est alors

• Si, alors l'équation f(x) = 0 admet deux solutions qui sont $x_1 = \ldots$ et $x_2 = \ldots$.

La forme factorisée de f(x) est alors

Exercice 2 (4 points)

Résoudre dans $\mathbb R$ les équations suivantes :

- 1. $x^2 9x + 8 = 0$
- $2. -4x^2 + 4x 1 = 0$
- 3. $x^2 + x = -6$

Exercice 3 (3 points)

Soit f la fonction définie sur \mathbb{R} par $f(x) = -x^2 + 4x + 7$.

- 1. Justifier par le calcul que le sommet de la parabole est le point S(2; 11).
- 2. En déduire le tableau de variation de f. Justifier.

Exercice 4 (2 points)

Soit f la fonction définie sur \mathbb{R} par $f(x) = x^2 - 5x + 4$.

- 1. Vérifier que les solutions de l'équation f(x) = 0 sont 1 et 4.
- 2. En déduire une forme factorisée de f(x). Justifier.

Exercice 5 (Bonus, 1 point)

Déterminer l'expression de la fonction f polynôme du second degré dont les racines sont -2 et 3 et dont la courbe passe par le point A(2;-1).