Correction du devoir n° 3

1. a) Équation
$$3m^2 + 7m - 6 = 0$$
.

$$\Delta = b^2 - 4ac = 49 + 72 = 121 = 11^2.$$

 $\Delta > 0$, donc l'équation a deux solutions :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-7 - 11}{6} = -3.$$

$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-7 + 11}{6} = \frac{2}{3}.$$
Les solutions sont -3 et $\frac{2}{3}$.

b) Signe de $3m^2 + 7m - 6 = 0$.

Le trinôme $3m^2 + 7m - 6$ a pour racines -3 et $\frac{2}{3}$. Il prend le signe de a (a = 3 > 0) à l'extérieur des racines.

m	$-\infty$		-3		2/3		$+\infty$
$3m^2 + 7m - 6$		+	0	_	0	+	

- 2. Valeur de m pour que (E) ne soit pas du second degré.
 - (E) n'est pas une équation du second degré si et seulement si le coefficient de x^2 est nul, c'est à dire m-1=0, c'est à dire m=1.

(E) s'écrit alors
$$-4x - 5 = 0$$
 c'est à dire $x = -\frac{5}{4}$.

Donc, si m = 1, l'équation (E) a une solution : $-\frac{5}{4}$.

3. a) -1 est racine de (E) si et seulement si

$$(m-1) \times (-1)^2 - 4m \times (-1) + m - 6 = 0$$

$$m - 1 + 4m + m - 6 = 0$$

$$6m-7=0$$
, ce qui équivaut à $m=\frac{7}{6}$

-1 est racine de (E) si et seulement si $m=\frac{1}{2}$

b) 1 est racine de (E) si et seulement si

$$(m-1) \times (1)^2 - 4m \times (1) + m - 6 = 0$$

$$m - 1 - 4m + m - 6 = 0$$

$$-2m - 7 = 0$$
, soit enfin $m = -\frac{7}{2}$

1 est racine de (E) si et seulement si $m=-\frac{1}{2}$

- c) m pour que (E) ait une racine double.
 - (E) a pour discriminant :

$$\Delta = (4m)^2 - 4(m-1)(m-6) = 16m^2 - 4(m^2 - 7m + 6).$$

$$\Delta = 16m^2 - 4m^2 + 28m - 24 = 12m^2 + 28m - 24.$$

$$\Delta = 4(3m^2 + 7m - 6).$$

Or on sait que (E) admet une racine double si et seulement si elle est du second degré $(m \neq 1)$ avec $\Delta = 0$, c'est à dire $3m^2 - 7m - 6 = 0$.

D'après la question 1)a):

- (E) admet une racine double ssi m = -3 ou $m = \frac{2}{3}$.
- d) (E) n'admet pas de racine réelle si et seulement si elle est du second degré avec $\Delta < 0$,

c'est à dire
$$3m^2 - 7m - 6 < 0$$
.

D'après la question 1)b):

(E) n'admet pas de racine réelle ssi m appartient à

On vérifie que sur cet intervalle $m \neq 1$.

e) (E) admet deux racines réelles distinctes si et seulement si elle est du second degré avec $\Delta > 0$.

Cela revient à $m \neq 1$ et $3m^2 - 7m - 6 > 0$.

d'après la question 1)b):

$$3m^2 - 7m - 6 > 0 \text{ ssi } m \in]-\infty; -3[\cup] \frac{2}{3}; +\infty[.$$

Or. 1 appartient à cette réunion d'intervalles.

- (E) admet deux racines réelles distinctes si et seulement si m appartient à $]-\infty;-3[\cup]\frac{2}{3};1[\cup]1;+\infty[.$
- f) On a:

Pour tout réel x, $(m-1)x^2 - 4mx + m - 6 < 0$ si et seulement si (E) n'a pas de racine réelle et m-1 < 0,

c'est à dire si et seulement si m appartient à $\left|-3;\frac{2}{3}\right|$ et m<1.

c'est à dire si et seulement si m appartient à $\left| -3; \frac{2}{3} \right|$

Finalement,

Pour tout réel x, $(m-1)x^2 - 4mx + m - 6 < 0$ si et seulement si m appartient à $-3; \frac{2}{3}$