2de. Calcul mental. Fiche nº 24

Exercice 1

On considère la droites d_1 , d_2 et d_3 d'équation respective 2x + 5y + 1 = 0, y = -6x + 1, et 5x + 10 = 0. Soient A(2; 7) et B(1; -3) deux points.

Travail à effectuer mentalement	Réponse(s)
Équation réduite de d_1	
Équation réduite de d_2	
Équation réduite de d_3	
Pente de d_1 , d_2 , d_3	
Un vecteur directeur d_1, d_2, d_3	
Point d'absisse 0 de d_1	
Point d'absisse 2 de d_2	
Point d'ordonnée 5 de d_3	
Équation de d passant par	
A(2;7) et parallèle à (Ox)	
Équation de d passant par	
A(2;7) et parallèle à (Oy)	
Équation de d passant par	
O(0;0) et de pente -3	
Équation de d passant par	
B(1;-3) et de pente 1	
Coordonnées du vecteur \overrightarrow{AB}	
Pente de la droite (AB)	

2de. Calcul mental. Fiche nº 25

Exercice 1

On considère la droites d_1 , d_2 et d_3 d'équation respective x - 4y + 3 = 0, y = 6x + 7, et 6y + 2 = 0. Soient A(-1; -4) et B(1; -3) deux points.

y = 6x + 7, et $6y + 2 = 0$. Soient A	A(-1;-4) et $B(1;-3)$ deux points.
Travail à effectuer mentalement	Réponse(s)
Équation réduite de d_1	
Équation réduite de d_2	
Équation réduite de d_3	
Pente de d_1 , d_2 , d_3	
Un vecteur directeur d_1, d_2, d_3	
Point d'ordonnée 0 de d_1	
Point d'absisse 2 de d_2	
Point d'absisse 5 de d_3	
Équation de d passant par	
A(-1;-4) et parallèle à (Ox)	
Équation de d passant par	
A(-1;-4) et parallèle à (Oy)	
Équation de d passant par	
O(0;0) et de pente -9	
Équation de d passant par	
B(1;-3) et de pente -1	
Coordonnées du vecteur \overrightarrow{AB}	
Pente de la droite (AB)	