Exercices de préparation du second contrôle commun de 1re S Quelques corrigés

Probabilités 1

Exercice 1

Les deux frères Bola, Tim et Tom, ont chacun organisé une tombola.

Tim propose 100 billets, dont 30 gagnants répartis comme suit :

- 1 lot de 250 euros,
- 4 lots de 50 euros,
- 25 lots de 2 euros.

Tom propose également 100 billets, dont les gagnants sont répartis comme suit :

- 5 lots de 20 euros,
- 10 lots de 15 euros,
- 15 lots de 10 euros.
- 20 lots de 5 euros.

Dans chaque tombola, le prix du billet est de 5 euros.

Soient respectivement X et Y les gains algébriques liés à l'achat d'un billet chez Tim et Tom.

- 1. Variable aléatoire X.
 - (a) Justifier que P(X = -5) est égal à 0, 7.

X = -5 correspond à l'événement : le billet acheté à la tombola de Tim est un billet perdant. 100 - 30 = 70.

Comme il y a 70 billets perdants, on en déduit que

$$P(X = -5) = \frac{nb \ cas \ favorables}{nb \ cas \ total}$$
$$= \frac{70}{100}$$
$$= 0, 7$$

(b) Déterminer la loi de probabilité de la variable aléatoire X.

$$250 - 5 = 245$$
.

$$50 - 5 = 45$$
.

$$2 - 5 = -3$$
.

$$0 - 5 = -5$$
.

Les valeurs possibles de X sont -5, -3, 45 et 245.

On a vu que
$$P(X = -5) = 0, 7$$
.
 $P(X = -3) = \frac{25}{100} = 0, 25$.
 $P(X = 45) = \frac{4}{100} = 0, 04$.
 $P(X = 245) = \frac{1}{100} = 0, 01$.

$$P(X=45) = \frac{4}{100} = 0,04.$$

$$P(X = 245) = \frac{1}{100} = 0.01$$

La loi de probabilité de X se résume donc par le tableau :

x_i	-5	-3	45	245
$P(X=x_i)$	0,7	0,25	0,04	0,01

2. Variable aléatoire Y.

On donne partiellement la loi de probabilité de Y ci-dessous :

y_i	-5	0	5	10	15
$P(Y=y_i)$		0,2	0,15	0,1	0,05

Compléter la loi de probabilité de Y. Justifier.

$$5 + 10 + 15 + 20 = 50.$$

Il y a 50 billets gagnants à la tombola de Tom.

100 - 50 = 50. Il y a donc 50 billets perdants.

$$P(Y = -5) = \frac{50}{100} = 0, 5.$$
On peut vérifer que $\sum P(Y = y_i) = 1$.

3. Pour chaque tombola calculer la probabilité de gagner au moins 5 euros.

Les valeurs possibles de X sont -5, -3; 45 et 245.

$$P(X \ge 5) = P(X = 45) + P(X = 245) = 0.04 + 0.01 = 0.05.$$

Les valeurs possibles de Y sont -5, 0, 5, 10 et 15.

$$P(Y \ge 5) = P(Y = 5) + P(Y = 10) + P(Y = 15) = 0.15 + 0.1 + 0.5 = 0.3$$

Chez Tim, la probabilité de gagner au moins 5 euros est de 0,05.

Chez Tom, la probabilité de gagner au moins 5 euros est de 0,3.

4. Calculer l'espérance mathématique de chacune des variables aléatoires X et Y. Comparer et interpréter.

$$E(X) = \sum_{i=1}^{n} x_i \times P(X = x_i)$$

= -5 \times 0, 7 - 3 \times 0, 25 + 45 \times 0, 04 + 245 \times 0, 01
= 0

$$E(Y) = \sum_{i=0}^{\infty} y_i \times P(Y = y_i)$$

= -5 \times 0, 5 + 0 \times 0, 2 + 5 \times 0, 15 + 10 \times 0, 1 + 15 \times 0, 05
= 0

Dans les deux cas le jeu est équitable puisque l'espérance est nulle.

5. Calculer la variance et l'écart-type de chacune des variables aléatoires X et Y. Que pourrait-on conseiller à Eva, qui hésite entre Tim et Tom, sachant qu'elle n'a pas le goût du risque?

$$V(X) = E(X^{2}) - [E(X)]^{2}$$

$$V(X) = \sum x_{i}^{2} p_{i} - 0^{2}$$

$$V(X) = (-5)^{2} \times 0, 7 + (-3)^{2} \times 0, 25 + 45^{2} \times 0, 04 + 245^{2} \times 0, 01$$

$$V(X) = 701$$

$$\sigma(X) = \sqrt{V(X)}$$

$$\sigma(X) = \sqrt{701}$$

$$\sigma(X) \approx 26,48$$

$$\begin{array}{lcl} V(Y) & = & E(Y^2) - [E(Y)]^2 \\ V(Y) & = & \sum {y_i}^2 p_i - 0^2 \\ V(Y) & = & (-5)^2 \times 0, 5 + 0^2 \times 0, 2 + 5^2 \times 0, 15 + 10^2 \times 0, 1 + 15^2 \times 0, 05 \\ V(Y) & = & 37, 5 \\ \sigma(Y) & = & \sqrt{V(Y)} \\ \sigma(Y) & = & \sqrt{37, 5} \\ \sigma(Y) & \approx & 6, 12 \end{array}$$

On rappelle que E(X) = E(Y) = 0.

Les deux tombolas ont la même espérance.

Or, $\sigma(Y) < \sigma(X)$.

Cela signifie que dans la tombola proposée par Tom, la dispersion des gains par rapport à l'espérance (0) est moins importante.

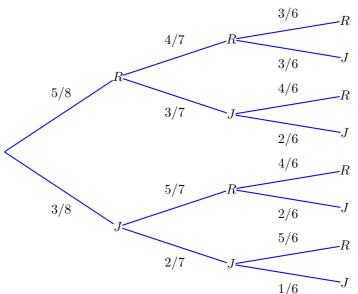
Eva, joueuse prudente, doit donc préférer la tombola de Tom.

Exercice 2

(2,5 points)

Une urne contient 5 jetons rouges (R) et 3 jetons jaunes (N). On tire successivement et sans remise 3 jetons. À chaque tirage, tous les jetons présents dans l'urne ont la même probabilité d'être choisis.

1. Représenter la situation par un arbre pondéré.



2. Calculer la probabilité de l'événement $A: \ll$ on obtient exactement un jeton rouge ». Il y a 3 chemins sur l'arbre qui correspondent à un tirage donnant exactement un jeton rouge. L'événement A est constitué des 3 événements élémentaires (R; J; J), (J; R; J), et (J; J; R).

$$P(A) = P(R; J; J) + P(J; R; J) + P(J; J; R)$$

$$= \frac{5}{8} \times \frac{3}{7} \times \frac{2}{6} + \frac{3}{8} \times \frac{5}{7} \times \frac{2}{6} + \frac{3}{8} \times \frac{2}{7} \times \frac{5}{6}$$

$$= 3 \times \frac{5 \times 3 \times 2}{8 \times 7 \times 6}$$

$$= \frac{15}{56}$$

La probabilité d'obtenir exactement un jeton rouge est de $\frac{15}{56}$.

3. Calculer la probabilité de l'événement B : « on obtient au moins un jeton rouge ». \overline{B} est l'événement : « on obtient 3 jetons jaunes ».

$$P(\overline{B}) = P(J; J; J)$$

$$P(\overline{B}) = \frac{3}{8} \times \frac{2}{7} \times \frac{1}{6}$$

$$P(\overline{B}) = \frac{1}{56}$$

$$P(B) = 1 - P(\overline{B})$$

$$= 1 - \frac{1}{56}$$

$$= \frac{55}{56}$$

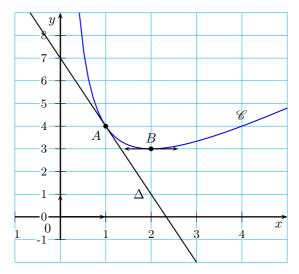
La probabilité d'obtenir au moins un jeton rouge est de $\frac{55}{56}$.

2 Dérivation

Exercice 3 (correction)

Le graphique ci-dessous donne la courbe $\mathscr C$ d'une fonction f définie et dérivable sur $]0;+\infty[$. La droite Δ est tangente à la courbe $\mathscr C$ au point A.

La tangente au point B à $\mathscr C$ est parallèle à l'axe des abscisses.



- 1. Lire graphiquement les valeurs de f(1) et f(2).
 - f(1) est l'ordonnée du point de la courbe d'abscisse 1. Donc f(1) = 4.

De même, f(2) = 3.

- 2. Déterminer à l'aide du graphique, mais en justifiant, les valeurs de f'(1) et f'(2).
 - f'(1) est le coefficient directeur de la tangente à la courbe au point d'abscisse 1, donc au point A. Cette tangente est la droite Δ , passant par A(1;4) et C(2;1).

Elle a une équation de la forme y = mx + p.

$$m = \frac{y_C - y_A}{x_C - x_A}$$
$$= \frac{1 - 4}{2 - 1}$$
$$= -3$$

Donc f'(1) = -3.

- f'(2) est le coefficient directeur de la tangente à la courbe au point B (d'abscisse 2).
- Comme cette tangente est parallèle à l'axe des abscisses, son coefficient directeur est nul. Donc

$$f'(1) = -3$$
 et $f'(2) = 0$.

- 3. Déterminer une équation de la droite Δ .
 - On a vu que Δ a pour coefficient directeur -3.
 - Δ a donc une équation de la forme y = -3x + p.
 - On remplace x et y par les coordonnées d'un point de Δ , par exemple A.

$$y_A = -3x_A + p$$

$$4 = -3 \times 1 + p$$

$$p = 7$$

L'ordonnée à l'origine est 7, comme on peut le vérifier sur le graphique.

Donc
$$\Delta$$
 a pour équation $y = -3x + 7$.

- 4. On admet désormais que f a une expression de la forme $f(x) = ax + b + \frac{4}{x}$.
 - (a) En s'aidant des résultats de la question 1., déterminer a et b et donner l'expression de f(x)

pour tout
$$x > 0$$
. .
$$f(1) = a \times 1 + b + \frac{4}{1} = a + b + 4.$$

- Or, on sait que f(1) = 4. D'où a + b + 4 = 4, soit a + b = 0. De même, $f(2) = 2a + b + \frac{4}{2} = 2a + b + 2$.
- On a vu que f(2) = 3.
- Dira vu que f(2) = 3.
 Donc 2a + b + 2 = 3, soit 2a + b = 1.
 D'où le systême $\begin{cases} a + b = 0 \\ 2a + b = 1 \end{cases}, \begin{cases} b = -a \\ 2a a = 1 \end{cases}, \begin{cases} a = 1 \\ b = -1 \end{cases}$

D'où
$$a = 1$$
 et $b = -1$.

Ainsi, pour tout
$$x > 0$$
, $f(x) = x - 1 + \frac{4}{x}$.

(b) Calculer alors
$$f'(x)$$

(b) Calculer alors
$$f'(x)$$
.
$$f'(x) = 1 - \frac{4}{x^2}.$$

(c) Retrouver par le calcul les résultats de la question 2.

$$f'(1) = 1 - \frac{4}{1^2}$$

= 1 - 4
= -3

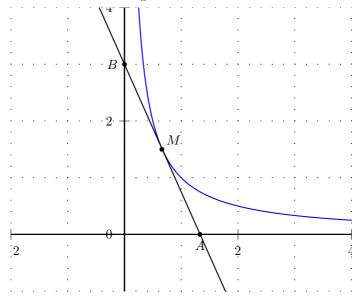
$$f'(2) = 1 - \frac{4}{2^2}$$

= 1 - 1
= 0

On retrouve bien
$$f'(1) = -3$$
 et $f'(2) = 0$.

Exercice 4 (n° 63 page 72)

1. Construire l'hyperbole \mathcal{H} d'équation $y = \frac{1}{x}$ pour x > 0.



2. Soit M le point d'abscisse a de \mathcal{H} (a > 0).

Écrire en fonction de a une équation de la tangente à \mathcal{H} au point M.

Posons
$$f(x) = \frac{1}{x}$$
.

$$y = f'(a)(x - a) + f(a)$$

Soit
$$a > 0$$
. On a clairement $f(a) = \frac{1}{a}$.

La fonction inverse est dérivable sur $]0; +\infty[$ et pour tout $x>0, f'(x)=-\frac{1}{x^2}.$

$$f'(a) = -\frac{1}{a^2}.$$

$$y = f'(a)(x-a) + f(a)$$

$$y = f'(a)(x - a) + f(a)$$

$$y = -\frac{1}{a^2}(x - a) + \frac{1}{a}$$

$$y = -\frac{1}{a^2}x + \frac{2}{a}$$

$$y = -\frac{1}{a^2}x + \frac{2}{a}$$

La tangente
$$d$$
 à \mathcal{H} en $M(a; f(a))$ a pour équation $y = -\frac{1}{a^2}x + \frac{2}{a}$.

3. La tangente en M coupe les axes en A et B. Calculer en fonction de a, les coordonnées de A et B. Le point A appartient à d et à l'axe des abscisses, donc $y_A = 0$. En rempaçant dans l'équation de d, on a

$$\frac{-1}{a^2}x + \frac{2}{a} = 0$$

$$\frac{-1}{a^2}x = -\frac{2}{a}$$

$$x = 2a$$

Donc
$$A(2a;0)$$
.

Le point B appartient à d et à l'axe des ordonnées, donc $x_B = 0$. En rempaçant dans l'équation de d, on a

$$y_B = \frac{2}{a}$$

Donc
$$B\left(0; \frac{2}{a}\right)$$
.

4. Démontrer que M est le milieu de [AB] quel que soit a > 0.

Soit
$$a > 0$$
. On a $M(a; \frac{1}{a})$.

Notons
$$I$$
 le milieu de $[AB]$.
 $x_I = \frac{x_A + x_B}{2} = \frac{2a+0}{2} = a$.

$$y_I = \frac{y_A + y_B}{2} = \frac{\frac{2}{a}}{2} = \frac{2}{a} \times \frac{1}{2} = \frac{1}{a} = f(a).$$
Donc $I(a; \frac{1}{a})$.
Ainsi I et M sont confordus, et M est bi

Donc
$$I(a; \frac{1}{a})$$
.

Ainsi, I et M sont confondus, et M est bien le milieu de [AB].

Pour tout
$$a > 0$$
, M est le milieu de $[AB]$.

Exercice 5

- Soit f la fonction définie sur \mathbb{R} par $f(x) = x^3 3x^2 9x + 1$.
 - 1. (a) Calculer la dérivée de f. Comme toute fonction polynôme, f est dérivable sur \mathbb{R} . Pour tout $x \in \mathbb{R}$,

$$f'(x) = 3x^2 - 6x - 9$$
$$= 3(x^2 - 2x - 3)$$

(b) Déterminer et construire le tableau de variation de f sur [-2; 4].

On étudie le signe du trinôme
$$x^2 - 2x - 3$$
.
 $\Delta = b^2 - 4ac = 4 - 12 = 16 > 0$

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{2 - 4}{2} = -1.$$

$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{2+4}{2} = 3.$$

On etudie le signe du trinome x - 2x - 3. $\Delta = b^2 - 4ac = 4 - 12 = 16 > 0.$ $x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{2 - 4}{2} = -1.$ $x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{2 + 4}{2} = 3.$ $f'(x) = 3(x^2 - 2x - 3)$ a le même signe que $x^2 - 2x - 3$, qui est positif (signe de a) à l'extérieur

x	-2		-1		3		4
f'(x)		+	0	_	0	+	
f(x)	-1	/	6	\	-26	/	-19

$$f(-1)=(-1)^3-3\times (-1)^2-9\times (-1)+1=-1-3+9+1=6.$$
 De même, $f(-2)=-1,\ f(3)=-26,$ et $f(4)=-19.$

- (c) En déduire un encadrement de f(x) lorsque $x \in [-2; 4]$. Sur [-2; 4], le maximum de f est 6 et le minimum de f est -26. Lorsque $x \in [-2; 4], -26 \le f(x) \le 6$.
- 2. Déterminer une équation de la tangente T à la courbe $\mathscr C$ de f au point d'abscisse 1. On a vu que $f'(x)=3x^2-6x-9$.

$$f'(1) = 3 - 6 - 9 = -12.$$

Par ailleurs, f(1) = 1 - 3 - 9 + 1 = -10.

$$y = f'(1)(x-1) + f(1)$$

$$y = -12(x-1) - 10$$

$$y = -12x + 2$$

La tangente à \mathscr{C} au point d'abscisse 1 a pour équation y = -12x + 2

3. (a) Vérifier que pour tout $x \in \mathbb{R}$,

$$f(x) - (-12x + 2) = (x - 1)(x^2 - 2x + 1).$$

Soit $x \in \mathbb{R}$,

$$f(x) - (-12x + 2) = x^3 - 3x^2 - 9x + 1 - (-12x + 2)$$

= $x^3 - 3x^2 + 3x - 1$

Par ailleurs,

$$(x-1)(x^2-2x+1) = x^3-2x^2+x-x^2+2x-1$$
$$= x^3-3x^2+3x-1$$

Donc pour tout
$$x \in \mathbb{R}$$
, $f(x) - (-12x + 2) = (x - 1)(x^2 - 2x + 1)$.

(b) Déterminer la position de la courbe $\mathscr C$ par rapport à la droite T. On étudie le signe de f(x) - (-12x + 2).

$$f(x) - (-12x + 2) = (x - 1)(x^{2} - 2x + 1)$$
$$= (x - 1)(x - 1)^{2}$$
$$= (x - 1)^{3}$$

Donc f(x) - (-12x + 2) a le même signe que x - 1.

x	$-\infty$		1		$+\infty$
f(x) - (-12x + 2)		_	0	+	

Donc \mathscr{C} est en-dessous de la tangente T sur $]-\infty;1[$.

Donc \mathscr{C} est en-dessus de T sur $]1; +\infty[$.

4. Existe-t-il des points de $\mathscr C$ où la tangente est parallèle à la droite d'équation y=-9x+2? Dans l'affirmative préciser les coordonnées de ces points.

La tangente est parallèle à cette droite si elle a la même coefficient directeur : -9. On résout l'équation f'(x) = -9.

$$f'(x) = -9$$

$$3x^{2} - 6x - 9 = -9$$

$$3x^{2} - 6x = 0$$

$$x^{2} - 2x = 0$$

$$x(x - 2) = 0$$

$$x = 0 \text{ ou } x = 2$$

$$f(0) = 1$$
, et $f(2) = -21$.

Il existe deux tangentes à $\mathscr C$ qui sont parallèles à la droite d'équation y=-9x+2. Ce sont les tangentes aux points A(0;1) et B(2;-21).

3 Suites

Exercice 6

Une urne contient 5 boules noires et 2 boules blanches. On effectue des tirages successifs avec remise d'une boule dans l'urne. À tout moment, chacune des boules a la même probabilité d'être choisie.

1. Dans cette question, on suppose que l'on effectue 2 tirages successifs d'une boule dans l'urne. Justifier que la probabilité d'obtenir au moins une boule blanche est $\frac{24}{40}$

Notons A: "On obtient au moins une boule blanche".

Alors \overline{A} : "On n'obtient aucune boule blanche".

Autrement dit, \overline{A} correspond au tirage (N; N) (2 boules noires).

$$P(\overline{A}) = \left(\frac{5}{7}\right)^2 = \frac{25}{49}.$$

$$Donc $P(A) = 1 - P(\overline{A}) = 1 - \frac{25}{49} = \frac{24}{49}.$$$

- 2. On suppose désormais que l'on effectue n tirages $(n \ge 1)$, et l'on note p_n la probabilité d'obtenir au moins une boule blanche sur les n tirages.
 - (a) Justifier que $p_n = 1 \left(\frac{5}{7}\right)^n$.

Avec les mêmes notations, \overline{A} correspond au tirage de n boules noires $(N; N; N; \ldots; N)$.

$$P(\overline{A}) = \left(\frac{5}{7}\right)^n.$$

$$p_n = P(A) = 1 - \left(\frac{5}{7}\right)^n.$$

(b) Montrer que pour tout $n \ge 1$, $p_{n+1} - p_n = \frac{2 \times 5^n}{7^{n+1}}$.

$$p_{n+1} - p_n = 1 - \left(\frac{5}{7}\right)^{n+1} - \left(1 - \left(\frac{5}{7}\right)^n\right)$$

$$= \left(\frac{5}{7}\right)^n - \left(\frac{5}{7}\right)^{n+1}$$

$$= \left(\frac{5}{7}\right)^n \times \left(1 - \frac{5}{7}\right)$$

$$= \left(\frac{5}{7}\right)^n \times \frac{2}{7}$$

$$= \frac{2 \times 5^n}{7^{n+1}}$$

(c) Que peut-on en déduire sur le sens de variation de la suite
$$(p_n)$$
? Pour tout $n \in \mathbb{N}, \ p_{n+1} - p_n = \frac{2 \times 5^n}{7^{n+1}} > 0.$ On en déduit que la suite (p_n) est croissante.

- (d) (Question bonus)
 - i. Écrire un algorithme qui permette de trouver le plus petit entier n_0 tel que $p_{n_0} \ge 0,999$. Debut

N prend la valeur 1

P prend la valeur $\frac{2}{7}$

Tant que P < 0.999

N prend la valeur N+1

P prend la valeur $1 - \left(\frac{5}{7}\right)^N$

Fin Tant que

Afficher N

Fin

ii. Programmer cet algorithme à la calculatrice et indiquer la valeur de n_0 .

On trouve
$$n_0 = 21$$
.

iii. Interpréter le résultat précédent par une phrase.

À partir de 21 tirages successifs, la probabilité d'obtenir au moins une boule blanche est supérieure à 0,999.

Exercice 7

Calculer les sommes suivantes (en justifiant le résultat) :

1. $A = 7 + 10 + 13 + \dots + 304 + 307$.

A est une somme de termes de la la suite arithmétique de raisin 3 et de premier terme $u_0 = 7$. On cherche le nombre de termes, et pour cela on cherche à quelle valeur de n correspond 307. Pour tout $n \ge 0$, $u_n = 7 + 3n$.

$$7 + 3n = 307$$
$$3n = 300$$
$$n = 100$$

Donc, en posant $u_0 = 7$, on a $u_{100} = 307$. La somme A compte 101 termes.

$$A = 7 + 10 + 13 + \dots + 304 + 307$$
$$= \frac{(7 + 307) \times 101}{2}$$
$$= 15857$$

2. $B = 1 + 3 + 3^2 + 3^3 + 3^4 + \dots + 3^{15}$.

B est une somme de termes consécutifs de la suite géométrique de premier terme $u_0 = 1$ et de raison 3.

La somme allant de $3^0 = 1$ à 3^{15} , elle contient 16 termes.

$$B = 3^{0} + 3^{1} + 3^{2} + 3^{3} + 3^{4} + \dots + 3^{15}$$

$$= 1 \times \frac{1 - 3^{16}}{1 - 3}$$

$$= \frac{3^{16} - 1}{2}$$

$$= 21523360$$

Exercice 8

Soit (u_n) la suite définie par $u_0 = 6$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = -\frac{1}{4}u_n + 5$.

1. Calculer u_1 , u_2 et u_3 .

$$u_0 = 6.$$

$$u_1 = -\frac{1}{4} \times u_0 + 5 = -\frac{1}{4} \times 6 + 5 = -\frac{3}{2} + \frac{10}{2} = \frac{7}{2} = 3, 5.$$

$$u_2 = -\frac{1}{4} \times u_1 + 5 = -\frac{1}{4} \times \frac{7}{2} + 5 = -\frac{7}{8} + \frac{40}{8} = \frac{33}{8} = 4, 125.$$

$$u_3 = -\frac{1}{4} \times u_2 + 5 = -\frac{1}{4} \times \frac{33}{8} + 5 = -\frac{33}{32} + \frac{160}{32} = \frac{127}{32} = 3,96875.$$

2. La suite (u_n) est-elle arithmétique? Est-elle géométrique? Justifier.

$$u_1 - u_0 = 3, 5 - 6 = -2, 5.$$

 $u_2 - u_1 = 4, 125 - 3, 5 = 0, 625.$

Donc
$$u_2 - u_1 \neq u_1 - u_0$$
.

Donc la suite (u_n) n'est pas arithmétique.

$$\frac{u_1}{u_0} = \frac{3.5}{6} = \approx 0.583$$

$$\frac{u_2}{u_1} = \frac{4.125}{3.5} \approx 1,179.$$

Donc (u_n) n'est pas non plus géométrique.

3. On considère la suite (v_n) définie, pour tout entier naturel n, par

$$v_n = u_n - 4.$$

(a) Montrer que (v_n) est une suite géométrique dont on précisera la raison et le premier terme. Soit $n \in \mathbb{N}$.

$$\begin{array}{rcl} v_{n+1} & = & u_{n+1} - 4 \\ & = & -\frac{1}{4}u_n + 5 - 4 \\ & = & -\frac{1}{4}u_n + 1 \\ & = & -\frac{1}{4}\left(u_n - 4\right) \\ & = & -\frac{1}{4} \times v_n \end{array}$$

Donc (v_n) est une suite géométrique de raison $q=-\frac{1}{4}=-0,25.$ $v_0=u_0-4=6-4=2.$

 (v_n) est la suite géométrique de raison $-\frac{1}{4}$ et de premier terme $v_0 = 2$.

(b) Exprimer v_n en fonction de n.

Indication : on aura trouvé que la suite (v_n) est géométrique de raison $-\frac{1}{4}$

Pour tout $n \in \mathbb{N}$, $v_n = v_0 \times q^n$.

Donc pour tout $n \in \mathbb{N}$, $v_n = 2 \times \left(-\frac{1}{4}\right)^n = 2 \times (-0, 25)^n$.

(c) En déduire que pour tout $n \in \mathbb{N}$,

$$u_n = 2 \times (-0.25)^n + 4.$$

Comme pour tout entier n, $v_n = u_n - 4$, on a $u_n = v_n + 4$.

- Pour tout $n \in \mathbb{N}$, $u_n = 2 \times (-0.25)^n + 4$.
- 4. Pour tout $n \ge 0$, on note S_n et S_n' les sommes suivantes :

$$S_n = v_0 + v_1 + \ldots + v_n$$

 $S'_n = u_0 + u_1 + \ldots + u_n$

(a) Exprimer S_n en fonction de n.

 S_n est la somme des (n+1) premiers termes de la suite géométrique (v_n) (l'indice va de 0 à n, d'où n+1 termes).

Ainsi, pour tout $n \in \mathbb{N}$,

$$S_n = v_0 \times \frac{1 - q^{n+1}}{1 - q}$$

$$= 2 \times \frac{1 - (-0.25)^{n+1}}{1 - (-0.25)}$$

$$= 2 \times \frac{1 - (-0.25)^{n+1}}{1.25}$$

$$= \frac{8}{5} \left[1 - (-0.25)^{n+1} \right]$$

(b) Montrer que pour tout $n \ge 0$, $S_n' = \frac{8}{5} \left[1 - (-0.25)^{n+1} \right] + 4n + 4$. On rappelle que pour tout entier k, $u_k = v_k + 4$.

$$S'_{n} = \sum_{k=0}^{n} u_{k}$$

$$= \sum_{k=0}^{n} (v_{k} + 4)$$

$$= \sum_{k=0}^{n} v_{k} + \sum_{k=0}^{n} 4$$

$$= \frac{8}{5} \left[1 - (-0.25)^{n+1} \right] + \underbrace{4 + 4 + \dots + 4}_{n+1 \text{ fois}}$$

$$= \frac{8}{5} \left[1 - (-0.25)^{n+1} \right] + 4n + 4$$

Exercice 9

Partie A

- 1. Chaque mensualité coûte 300 euros de plus que la précédente, donc, pour tout entier n non nul, $u_{n+1} = u_n + 300$. La suite (u_n) est donc arithmétique de raison 300.
- 2. La suite (u_n) est arithmétique de raison 300 donc : pour tout entier n non nul, $u_n = u_1 + 300(n-1)$. De plus $u_1 = 8000$, donc pour tout entier n non nul, $u_n = 8000 + 300n 300 = 300n + 7700$.
- 3. La somme totale remboursée en 10 ans par l'entreprise est : $S=u_1+u_2+\cdots+u_{120}$. Or (u_n) est une suite arithmétique donc S=120 $\frac{u_1+u_{120}}{2}$. De plus $u_{120}=300\times 120+7700=43700$, donc S=120 $\frac{8000+43700}{2}=120\times 25850=3102000$. La somme totale remboursée par l'entreprise en 10 ans est donc de 3102000 euros.

Partie B

- 1. Chaque mois la mensualité augmente de 1 % , donc, pour tout entier n non nul, $v_{n+1}=v_n+\frac{1}{100}v_n=1,01v_n$. La suite (u_n) est donc géométrique de raison 1,01.
- 2. La suite (u_n) est géométrique de raison 1,01, donc pour tout entier n non nul, $v_n = v_1 \times 1,01^{n-1}$.
- 3. Le versement total en 10 ans est de : $V = v_1 + v_2 + \cdots + v_{120}$. Or (v_n) est une suite géométrique donc : $V = v_1 \frac{1 1,01^{120}}{1 1,01} = v_1 \frac{1 1,01^{120}}{-0,01} = 100v_1(1,01^{120} 1)$
- 4. Le versement total est de 3 000 000 si et seulement si V=3000000 .

$$V = 3000000 \iff 100v_1(1, 01^{120} - 1) = 3000000$$

$$\iff v_1 = \frac{30000}{1, 01^{120} - 1}$$

$$\iff v_1 \approx 13041, 28$$

Pour un rembousement total de 3 000 000, le premier versement doit être de 13041,28 euros.

Partie C

- 1. Chaque mensualité coûte 500 euros de plus que la précédente, donc, pour tout entier n non nul, $w_{n+1}=w_n+500$. La suite (w_n) est donc arithmétique de raison 500. On en déduit que, pour tout entier n non nul, $w_n=w_1+500(n-1)=15000+500n-500=500n+14500.$ Donc la somme totale versée jusqu'au $n^{\text{ième}}$ mois est : $S_n=w_1+w_2+\cdots+w_n=n \ \frac{w_1+w_n}{2}=n \ \frac{15000+500n+14500}{2}=n(250n+14750).$
- 2. On cherche à déterminer quand $S_w \geqslant 2500000$, c'est à dire $250n^2 + 14750n 2500000 \geqslant 0$. En simplifiant par 250, on obtient l'inéquation : $n^2 + 59n 10000 \geqslant 0$. $n^2 + 59n 10000$ est un polynôme du second degré dont le discriminant est $\Delta = 59^2 + 40000 = 43481$.

Ce polynôme a donc deux racines :
$$n_1 = \frac{-59 - \sqrt{43481}}{2}$$
 et $n_2 = \frac{-59 + \sqrt{43481}}{2} \approx 74, 7$. De plus le coefficient de n^2 est positif donc, pour tout $n \ge n_2$: $n^2 + 59n - 10000 \ge 0$. Donc, l'entreprise aura terminé ses remboursements au bout de 75 mois.

Exercice 10

Le salaire de Monique est de 1600 euros en janvier 2013. Chaque mois il augmente de 9 euros. On appelle v_0 le salaire du mois de janvier 2013, v_1 le salaire du mois de février 2013 et v_n le salaire du mois de rang n+1.

11

1. Exprimer v_{n+1} en fonction de v_n . Pour tout $n \ge 0$, $v_{n+1} = v_n + 9$.

- 2. Exprimer v_n en fonction de n.
 - (v_n) est la suite arithmétique de 1er terme $v_0 = 1600$ et de raison 9.

Pour tout
$$n \ge 0$$
, $v_n = v_0 + nr = 1600 + 9n$.

3. À quelle date le salaire de Monique dépassera-t-il pour la première fois 2000 euros?

$$v_n \ge 2000 \text{ ssi } 1600 + 9n \ge 2000, \text{ soit } 9n \ge 400, \ n \ge \frac{400}{9} \approx 44, 4.$$

Le plus petit entier n qui convient est n = 45.

Le salaire dépasse 2000 euros pour la 1re fois le mois correspondant à n=45 soit en octobre 2016. Vérification :

r = 9 > 0 donc la suite est croissante.

$$v_{44} = 1600 + 44 \times 9 = 1996$$
, et $v_{45} = 1600 + 45 \times 9 = 2005$.

4. Quelle somme totale percevra-t-elle comme salaire de janvier 2013 à décembre 2023 inclus? La période janvier 2013 à décembre 2023 correspond à exactement 11 années, soit $11 \times 12 = 132$ mois.

Il s'agit donc de calculer la somme des 132 premiers termes de la suite (v_n) , de v_0 à v_{131} . $v_{131} = v_0 + 131r = 1600 + 131 \times 9 = 2779$.

$$v_0 + v_1 + \dots + v_{131} = \frac{v_0 + v_{131}}{2} \times 132$$

= $\frac{1600 + 2779}{2} \times 132$
= 289 014

Le montant total des salaires accumulés sur la période janvier 2013-décembre 2023 est de $289\ 014$ euros.

Exercice 11

1. On considère le nombre B dont l'écriture décimale illimitée est $0,375\,375\,375\ldots$ où 375 est répété indéfiniment. Est-il rationnel ?

Si la partie décimale d'une nombre est périodique, alors le nombre est rationnel.

Le nombre B est donc rationnel.

- 2. On considère la suite définie par $v_1 = 0,375$ et, pour tout entier $n, v_{n+1} = 10^{-3}v_n$.
 - (a) Quelle est la nature de la suite (v_n) .

Pour tout $n \ge 1$, $v_{n+1} = 10^{-3}v_n$. Donc par définition (v_n) est géométrique.

 (v_n) est la suite géométrique de raison 10^{-3} et de 1er terme $v_1 = 0,375$.

(b) Donner l'écriture décimale de v_2 , v_3 et $v_1 + v_2 + v_3$.

$$v_1 = 0,375$$

$$v_2 = v_1 \times 10^{-3} = 0.375 \times 0.0001 = 0.000375.$$

$$v_3 = v_2 \times v_2 = 0,000\ 000\ 375.$$
 Ainsi, $v_1 + v_2 + v_3 = 0,375\ 375\ 375.$

(c) Pour tout entier naturel n, on pose $S_n = v_1 + v_2 + \cdots + v_n$. Exprimer S_n en fonction de n. S_n est la somme des n premiers termes de la suite géométrique (v_n) (il y a n termes de v_1 à v_n).

$$S_n = v_1 \times \frac{1 - q^n}{1 - q}$$

$$= 0,375 \times \frac{1 - (10^{-3})^n}{1 - 10^{-3}}$$

$$= 0,375 \times \frac{1 - 10^{-3n}}{0,999}$$

$$= \frac{375}{999} \times (1 - 10^{-3n})$$

$$= \frac{125}{333} \times (1 - 10^{-3n})$$

(d) Conjecturer la limite de 10^{-3n} lorsque n tend vers $+\infty$ et en déduire la limite de S_n lorsque n tend vers $+\infty$.

Que représente ce nombre par rapport à B?

Il semble que $\lim 10^{-3n} = 0$.

Justification: $10^{-3n} = (10^{-3})^n$. Comme $-1 < 10^{-3} < 1$, $\lim_{n \to \infty} (10^{-3})^n = 0$.

On en déduit que lorque n tend vers l'infini, $\lim 1-10^{-3n}=1$, et, par produit, que $\lim S_n=\frac{125}{333}$ La suite (S_n) converge vers une limite finie qui est $\frac{125}{333}$

$$S_n = 0,375\ 375\ 375\ \dots 375$$
 (375 apparait n fois) $\lim S_n = 0,375\ 375\ 375\ \dots$ (375 repete indefiniment) $\frac{125}{333} = B$

L'écriture de
$$B$$
 sous forme de fraction irréductible est $B = \frac{125}{333}$.

Exercice 12

Lucas lâche une balle d'une hauteur de 24 m. Lorsque la balle rebondit, la hauteur de son rebond perd 10% par rapport à la hauteur du rebond précédent. On pose $u_0=24$ et l'on note u_n la hauteur du n^e rebond.

1. Calculer u_1 .

On a
$$u_0 = 24$$
.

$$u_1 = 24 - 24 \times \frac{10}{100} = 24 \times 0.9 = 21.6.$$
 Le premier rebond a une hauteur de 21.6 m.

2. Montrer que (u_n) est une suite géométrique dont on précisera la raison.

Pour tout
$$n \in \mathbb{N}$$
, $u_{n+1} = u_n - u_n \times \frac{10}{100} = u_n - 0.1 \times u_n = 0.9 \times u_n$.

Donc (u_n) est une suite géométrique de raison $q = 0.9$.

3. On estime que la balle ne rebondit plus lorsque le rebond est inférieur à 1 cm.

Combien de rebonds a fait la balle?

On note p ce nombre.

Pour tout $n \in \mathbb{N}$, $u_n = u_0 \times q^n = 24 \times 0.9^n$.

On cherche la plus petite valeur de n pour laquelle $u_n \leq 0.01$ (puisque la hauteur u_n du n^e rebond est exprimée en m).

A l'aide de la calculatrice, on obtient $u_{73} \approx 0.0109$ et $u_{74} \approx 0.0098$. De plus, la suite (u_n) décroît car 0 < q < 1 et $u_0 > 0$.

La balle a donc fait 73 rebonds ayant des hauteurs supérieures à 1 cm.

On considère qu'elle a fait 73 rebonds puis s'est immobilisée : p = 73.

4. Quelle est alors la distance parcourue par la balle pendant ces p rebonds?

Pour chaque rebond, la balle parcourt la longueur u_n une fois en montant, et une fois en descendant.

L'énoncé dit que « Lucas lâche une balle d'une hauteur de 24 m ».

Notons D la distance totale parcourue par la balle.

$$D = 24 + \sum_{n=1}^{p} 2u_n$$

$$= 24 + 2 \sum_{n=1}^{p} u_n$$

$$= 24 + 2 \times (u_1 + \dots + u_{73})$$

$$= 24 + 2 \times 21, 6 \times \frac{1 - 0.9^{73}}{1 - 0.9}$$

$$\approx 455.8$$

La balle a parcouru environ 455.8 m.

Exercice 13

La suite (u_n) est définie par $u_0 = 4$ et pour tout entier n $u_{n+1} = u_n - 2n + 5$.

1. Pour tout n, $u_{n+1} - u_n = -2n + 5$, qui n'est pas constant (dépend de n).

On va fournir un contre-exemple à la définition d'une suite arithmétique en considérant les premiers termes:

 $u_0 = 4$.

$$u_1 = 4 - 0 + 5 = 9.$$

$$u_2 = 9 - 2 + 5 = 12.$$

Donc $u_1 - u_0 \neq u_2 - u_1$.

Il est clair qu'on ne passe pas d'un terme au suivant en ajoutant toujours un même nombre.

Donc (u_n) n'est pas arithmétique.

2. (v_n) est définie par $v_n = u_{n+1} - u_n$. (v_n) arithmétique?

$$\begin{array}{rcl} v_{n+1} - v_n & = & u_{n+2} - u_{n+1} - (u_{n+1} - u_n) \\ & = & u_{n+2} - 2u_{n+1} + u_n \\ & = & u_{n+1} - 2(n+1) + 5 - 2u_{n+1} + u_n \\ & = & -u_{n+1} - 2n + 3 + u_n \\ & = & -u_n + 2n - 5 - 2n + 3 + u_n \\ & = & -2 \end{array}$$

Pour tout entier n, $v_{n+1} = v_n - 2$.

Donc (v_n) est une suite arithmétique de raison r = -2.

Autre méthode pour le calcul, $v_n = -2n + 5$.

Donc
$$v_{n+1} - v_n = (-2 \times (n+1) + 5) - (-2n+5) = -2.$$

3. Exprimer v_n en fonction de n.

$$v_0 = u_1 - u_0 = 9 - 4 = 5.$$

Pour tout n, $v_n = v_0 + nr$.

Pour tout entier n, $v_n = 5 - 2n$, comme on l'a vu déjà.

4. $S_n = v_0 + v_1 + \cdots + v_n$.

$$S_n = v_0 + v_1 + \dots + v_n$$

$$= \frac{v_0 + v_n}{2} \times (n+1)$$

$$= \frac{5 + 5 - 2n}{2} \times (n+1)$$

$$= (5 - n)(n+1)$$

5. Démontrer que $S_n = u_{n+1} - u_0$. En revenant à la définition de (v_n) ,

$$S_n = v_0 + v_1 + \dots + v_n$$

= $(u_1 - u_0) + (u_2 - u_1) + (u_3 - u_2) + \dots + (u_{n+1} - u_n)$
= $u_{n+1} - u_0$

6. En déduire l'expression de u_n en fonction de n.

Pour tout n, $u_{n+1} = S_n + u_0$.

Donc pour tout $n \ge 1$,

$$u_n = S_{n-1} + u_0.$$

 $u_n = [5 - (n-1)] \times (n-1+1) + 4$
 $= (6-n)n + 4$
 $= -n^2 + 6n + 4$

Or, cette formule, en remplaçant n par 0, donne $u_0=4$.

La formule est donc correcte pour tout entier $n \in \mathbb{N}$.

Pour tout
$$n \in \mathbb{N}$$
, $u_n = -n^2 + 6n + 4$.

4 Trigonométrie

Exercice 14

Soit x un nombre réel. Exprimer en fonction de $\sin x$ et/ou de $\cos x$ les nombres suivants :

$$A(x) = 3\sin(\pi + x) + 5\cos\left(\frac{\pi}{2} - x\right) + 2\sin(-x) - \sin\left(\frac{\pi}{2} + x\right).$$

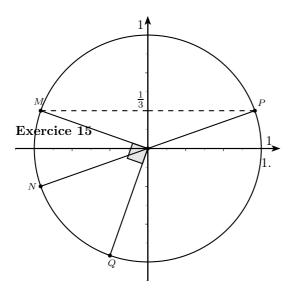
$$B(x) = 2\cos(-x - \pi) + \sin\left(-\frac{\pi}{2} - x\right) - 4\cos(-x).$$

$$A(x) = 3\sin(\pi + x) + 5\cos\left(\frac{\pi}{2} - x\right) + 2\sin(-x) - \sin\left(\frac{\pi}{2} + x\right)$$

$$= -3\sin(x) + 5\sin(x) - 2\sin(x) - \cos(x)$$

$$B(x) = 2\cos(-x - \pi) + \sin\left(-\frac{\pi}{2} - x\right) - 4\cos(-x).$$

$$B(x) = 2\cos(-x - \pi) + \sin\left(-\frac{\pi}{2} - x\right) - 4\cos(-x)$$
$$= -2\cos(x) - \cos(x) - 4\cos(x)$$
$$= -7\cos(x)$$



On a :
$$\cos^2 t + \sin^2 t = 1$$
,
donc $\cos^2 t = 1 - \frac{1}{9} = \frac{8}{9}$,
donc $\cos t = \sqrt{\frac{8}{9}}$ ou $\cos t = -\sqrt{\frac{8}{9}}$.
Or t appartient à $\left[\frac{\pi}{2}; \pi\right]$, donc $\cos t = -\sqrt{\frac{8}{9}}$,
donc $\cos t = -\frac{2\sqrt{2}}{3}$.

3. On a: $\sin(-t) = -\sin t = -\frac{1}{3}$ $\sin(\pi - t) = \sin t = \frac{1}{3}$ $\cos(\frac{\pi}{2} + t) = -\sin t = -\frac{1}{3}$ $\sin(\frac{\pi}{2} + t) = \cos t = -\frac{2\sqrt{2}}{3}$

Exercice 16 Résoudre l'équation $\sin x = \frac{\sqrt{3}}{2}$ dans $[0; 4\pi]$. $\frac{\sqrt{3}}{2} = \sin \frac{\pi}{2}$.

$$\frac{2\pi/3}{\sqrt{3}}$$

$$\frac{\sqrt{3}}{2}$$

Donc $x = \frac{\pi}{3} + k \times 2\pi$ ou $x = \pi - \frac{\pi}{3} + k \times 2\pi$, $k \in \mathbb{Z}$.

Les solutions dans \mathbb{R} sont les nombres de la forme $\frac{\pi}{3} + k2\pi$ et $\frac{2\pi}{3} + k2\pi$, $k \in \mathbb{Z}$.

Dans $[0; 4\pi]$, les solutions sont : $\frac{\pi}{3}$; $\frac{7\pi}{3}$; $\frac{2\pi}{3}$; et $\frac{8\pi}{3}$.

Exercice 17

Résoudre dans \mathbb{R} l'équation $\cos(2x) = -\frac{1}{2}$, puis dans $[0, 2\pi[$.

$$\begin{cases} 2x = \frac{2\pi}{3} + k2\pi, k \in \mathbb{Z} \\ \text{ou} \\ 2x = -\frac{2\pi}{3} + k2\pi, k \in \mathbb{Z} \end{cases}$$

$$\begin{cases} x = \frac{\pi}{3} + k\pi, k \in \mathbb{Z} \\ \text{ou} \\ x = -\frac{\pi}{3} + k\pi, k \in \mathbb{Z} \end{cases}$$

Déterminons les solutions de cette équation dans $[0; 2\pi]$.

Première famille de solutions :

Avec
$$k = 0, x = \frac{\pi}{3} \in [0; 2\pi[$$
.

Avec
$$k = 0$$
, $x = \frac{\pi}{3} \in [0; 2\pi[$.
Avec $k = 1$, $x = \frac{\pi}{3} + \pi = \frac{4\pi}{3} \in [0; 2\pi[$.
Avec $k = 2$, $x = \frac{7\pi}{3} \notin [0; 2\pi[$.

Avec
$$k = 2, x = \frac{7\pi}{3} \notin [0; 2\pi[$$

Si
$$k = 0, x = -\frac{\pi}{3} \notin [0; 2\pi[$$
.

Si
$$k = 1$$
, $x = -\frac{\pi}{3} + \pi = \frac{2\pi}{3} \in [0; 2\pi[$.

Deuxième famille de solutions : Si
$$k=0,\,x=-\frac{\pi}{3}\notin[0;2\pi[$$
. Si $k=1,\,x=-\frac{\pi}{3}+\pi=\frac{2\pi}{3}\in[0;2\pi[$. Si $k=2,\,x=-\frac{\pi}{3}+2\pi=\frac{5\pi}{3}\in[0;2\pi[$.

Les solutions de cette équation dans $[0; 2\pi[$ sont $: \frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3},$ et



Exercice 18

1.

$$2\sin^2 x - \sin x = 0 \iff \sin x (2\sin^2 x - 1) = 0$$

$$\iff \sin x = 0 \quad \text{ou} \quad 2\sin x - 1 = 0$$

$$\iff \sin x = 0 \quad \text{ou} \quad \sin x = \frac{1}{2}$$

$$\iff x = k\pi \quad \text{ou} \quad x = \frac{\pi}{6} + 2k\pi \quad \text{ou} \quad x = \frac{5\pi}{6} + 2k\pi$$

Dans $[-\pi; 2\pi]$, l'équation a 6 solutions : $-\pi; 0; \pi; 2\pi; \frac{\pi}{6}; \frac{5\pi}{6}$.

2.(a)

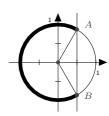
$$6 - 12\cos x = 0 \iff \cos x = \frac{1}{2}$$

$$\iff x = \frac{\pi}{3} + 2k\pi \text{ ou } x = -\frac{\pi}{3} + 2k\pi$$

Dans $[0; 2\pi[$, l'équation a 2 solutions : $\frac{\pi}{3}$; $\frac{5\pi}{3}$.

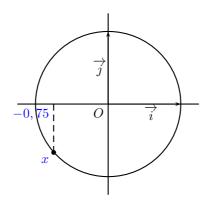
La solution $\frac{\pi}{3}$ est représentée par A. La solution $\frac{5\pi}{3}$ est représentée par B.

Sur
$$[0; 2\pi]$$
:



Exercice 19 (98 p 179) Soit x un réel de $\left[-\pi; -\frac{\pi}{2}\right]$.

1. Sachant que $\cos x = -\frac{3}{4}$, placer l'image de x sur le cercle trigonométrique.



2. Calculer $\sin x$.

Pour tout
$$x \in \mathbb{R}$$
, $\cos^2 x + \sin^2 x = 1$.

Pour tout
$$x \in \mathbb{R}$$
, $\cos^2 x + \sin^2 x = 1$.
Donc $\sin^2 x = 1 - \cos^2 x = 1 - \left(\frac{3}{4}\right)^2 = 1 - \frac{9}{16} = \frac{7}{16}$.

Donc
$$\sin x = \frac{\sqrt{7}}{4}$$
 ou $\sin x = -\frac{\sqrt{7}}{4}$.

Comme
$$x \in \left[-\pi; -\frac{\pi}{2}\right]$$
, $\sin x \leqslant 0$.

Donc
$$\sin x = -\frac{\sqrt{7}}{4}$$

3. Calculer $\cos(\frac{\pi}{2} + x)$, $\sin(\frac{\pi}{2} - x)$, $\cos(x + \pi)$, $\cos(\pi - x)$, $\sin(x + \pi)$, et $\sin(\pi - x)$.

$$\cos(\frac{\pi}{2} + x) = -\sin x = \frac{\sqrt{7}}{4}.$$
$$\sin(\frac{\pi}{2} - x) = \cos x = -\frac{3}{4}.$$

$$\sin(\frac{\pi}{2} - x) = \cos x = -\frac{3}{4}.$$

$$\cos(x+\pi) = -\cos x = \frac{3}{4}$$

$$\cos(x+\pi) = -\cos x = \frac{3}{4}.$$
$$\cos(\pi - x) = -\cos x = \frac{3}{4}.$$

$$\sin(x+\pi) = -\sin x = \frac{\sqrt{7}}{\frac{4}{77}}$$

$$\sin(\pi - x) = \sin x = -\frac{\sqrt[4]{7}}{4}$$