Chapitre 11 : Produit scalaire dans le plan

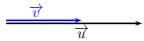
Ι **Définition**

Définition (vecteurs colinéaires)

Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs colinéaires non nuls.

Le produit scalaire de \overrightarrow{u} et \overrightarrow{v} est le nombre réel noté $\overrightarrow{u} \cdot \overrightarrow{v}$ défini par :

- Si \overrightarrow{u} et \overrightarrow{v} ont même sens, alors $\overrightarrow{u} \cdot \overrightarrow{v} = ||\overrightarrow{u}|| ||\overrightarrow{v}||$.
- Si \overrightarrow{u} et \overrightarrow{v} sont de sens contraires, alors $\overrightarrow{u} \cdot \overrightarrow{v} = -\|\overrightarrow{u}\| \|\overrightarrow{v}\|$.



Remarque

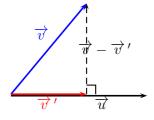
Le produit $\overrightarrow{u} \cdot \overrightarrow{u}$ est parfois noté \overrightarrow{u}^2 . On a donc $\overrightarrow{u}^2 = ||\overrightarrow{u}||^2$.

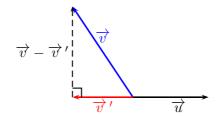
Définition (cas général)

Soient \overrightarrow{u} , \overrightarrow{v} des vecteurs non nuls, et \overrightarrow{v}' le projeté orthogonal de \overrightarrow{v} sur \overrightarrow{u} . Alors,

$$\overrightarrow{y} \cdot \overrightarrow{y} = \overrightarrow{y} \cdot \overrightarrow{y}'$$

Lorsque \overrightarrow{u} ou \overrightarrow{v} est le vecteur nul, on pose $\overrightarrow{u} \cdot \overrightarrow{v} = 0$.





Conséquence

Soient \overrightarrow{u} un vecteur non nul et \overrightarrow{v} un vecteur quelconque.

Le projet orthogonal \overrightarrow{v}' de \overrightarrow{v} sur \overrightarrow{u} est donné par la relation

$$\overrightarrow{v}' = \frac{(\overrightarrow{u} \cdot \overrightarrow{v})}{\|\overrightarrow{u}\|^2} \overrightarrow{u}$$

Démonstration

Si $\overrightarrow{u} \cdot \overrightarrow{v} = 0$, alors \overrightarrow{v}' est le vecteur nul et le résultat est clair.

Sinon, \overrightarrow{v} ' est non nul et colinéaire à \overrightarrow{u} , donc il existe $\lambda \in \mathbb{R}$ tel que \overrightarrow{v} ' = $\lambda \overrightarrow{u}$. Alors, $\overrightarrow{u} \cdot \overrightarrow{v} = \overrightarrow{u} \cdot \overrightarrow{v}$ ' = $\overrightarrow{u} \cdot (\lambda \overrightarrow{u}) = \lambda \|\overrightarrow{u}\|^2$. On en déduit la valeur de $\lambda : \lambda = \frac{(\overrightarrow{u} \cdot \overrightarrow{v})}{\|\overrightarrow{u}\|^2}$.

Donc $\overrightarrow{v}' = \frac{(\overrightarrow{u} \cdot \overrightarrow{v})}{\|\overrightarrow{u}\|^2} \overrightarrow{u}.$

Exercice 1

Formule du projeté orthogonal

Représenter un vecteur connaissant son produit scalaire avec un vecteur donné: ressource 450

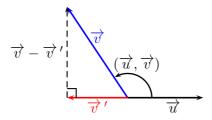
IIAutres expressions du produit scalaire

II.1 La formule du cosinus

Théorème

Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs non nuls. Alors,

$$\overrightarrow{u}\cdot\overrightarrow{v}=\|\overrightarrow{u}\|\times\|\overrightarrow{v}\|\times\cos(\overrightarrow{u};\overrightarrow{v})$$



Remarque

Comme $\cos(-x) = \cos(x)$, on peut utiliser la mesure d'un angle géométrique à la place de celle de l'angle orienté correspondant dans la formule du cosinus.

Par exemple, soit ABC un triangle tel que $AB=5,\ AC=4,\ {\rm et}\ (\overrightarrow{AB};\overrightarrow{AC})=-\frac{\pi}{\epsilon}$ [2 π]. alors $\widehat{BAC} = \frac{\pi}{6}$.

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{AB} \times \overrightarrow{AC} \times \cos(\overrightarrow{AB}; \overrightarrow{AC}) = 5 \times 4 \times \cos(-\frac{\pi}{6}) = 5 \times 4 \times \frac{\sqrt{3}}{2} = 10\sqrt{3}.$$

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times \cos(\widehat{BAC}) = 5 \times 4 \times \cos(\frac{\pi}{6}) = 5 \times 4 \times \frac{\sqrt{3}}{2} = 10\sqrt{3}.$$

Exercice 2

Appliquer la formule du cosinus : ressource 363

II.2 Expression en repère orthonormé

Théorème (Expression dans un repère orthonormé)

Soit $(O; \vec{i}, \vec{j})$ un repère orthonormé. Soient \overrightarrow{u} et \overrightarrow{v} des vecteurs de coordonnées $\overrightarrow{u}(x, y)$ et $\overrightarrow{v}(x', y')$. Alors,

$$\overrightarrow{u} \cdot \overrightarrow{v} = xx' + yy'$$

- Corollaire (Lien entre distance et produit scalaire) 1. $\|\overrightarrow{u}\|^2 = \overrightarrow{u}^2 = \overrightarrow{u} \cdot \overrightarrow{u} = x^2 + y^2$. D'où $\|\overrightarrow{u}\| = \sqrt{x^2 + y^2}$.
 - 2. Distance entre deux points $A(x_A, y_A)$ et $B(x_B, y_B)$:

$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

Démonstration

Les coordonnées de \overrightarrow{AB} sont $(x_B - x_A, y_B - y_A)$.

Exercice 3

- 1. Utiliser l'expression du produit scalaire en repère orthonormé : ressource 572
- 2. Déterminer le produit scalaire de 2 vecteurs représentés dans un quadrillage :
- 3. Déterminer une coordonnée d'un vecteur orthogonal à un autre vecteur : ressource 361

II.3 Expression avec les normes

Théorème (Expressions à l'aide des normes)

Pour tous vecteurs \overrightarrow{u} et \overrightarrow{v} ,

$$\overrightarrow{u} \cdot \overrightarrow{v} = \frac{1}{2} \Big(\|\overrightarrow{u}\|^2 + \|\overrightarrow{v}\|^2 - \|\overrightarrow{u} - \overrightarrow{v}\|^2 \Big)$$

$$\overrightarrow{u} \cdot \overrightarrow{v} = \frac{1}{2} \Big(\|\overrightarrow{u} + \overrightarrow{v}\|^2 - \|\overrightarrow{u}\|^2 - \|\overrightarrow{v}\|^2 \Big)$$

III Propriétés du produit scalaire

Définition (Vecteurs orthogonaux)

Deux vecteurs non nuls \overrightarrow{u} et \overrightarrow{v} sont orthogonaux si $(\overrightarrow{u}; \overrightarrow{v}) = \frac{\pi}{2}$ $(\overrightarrow{u}; \overrightarrow{v}) = -\frac{\pi}{2} \quad [2\pi].$

Le vecteur nul est considéré orthogonal à tout vecteur.

Propriété

Deux vecteurs sont orthogonaux si et seulement si leur produit scalaire est nul.

Remarque

L'orthogonalité des vecteurs $\overrightarrow{u}(x,y)$ et $\overrightarrow{v}(x',y')$ se traduit de façon analytique par :

$$\overrightarrow{u} \perp \overrightarrow{v} \quad \Leftrightarrow \quad xx' + yy' = 0$$

Propriété

Soient \overrightarrow{u} , \overrightarrow{v} , et \overrightarrow{w} des vecteurs quelconques, et k un nombre réel.

1. Symétrie.

$$\overrightarrow{u} \cdot \overrightarrow{v} = \overrightarrow{v} \cdot \overrightarrow{u}$$

- 2. Linéarité (et même bilinéarité avec la symétrie).

 - $(\overrightarrow{u} + \overrightarrow{v}) \cdot \overrightarrow{w} = \overrightarrow{u} \cdot \overrightarrow{w} + \overrightarrow{v} \cdot \overrightarrow{w}$. $(k\overrightarrow{u}) \cdot \overrightarrow{v} = k \times (\overrightarrow{u} \cdot \overrightarrow{v})$ et $\overrightarrow{u} \cdot (k\overrightarrow{v}) = k \times (\overrightarrow{u} \cdot \overrightarrow{v})$.

Ces deux derniers points traduisent la bilinéarité du produit scalaire.

On notera l'analogie avec les règles de calcul sur le produit des nombres réels.

Propriété (Identités remarquables)

$$\hat{1}. \|\overrightarrow{u} + \overrightarrow{v}\|^2 = \|\overrightarrow{u}\|^2 + 2\overrightarrow{u} \cdot \overrightarrow{v} + \|\overrightarrow{v}\|^2$$

$$2. \|\overrightarrow{u} - \overrightarrow{v}\|^2 = \|\overrightarrow{u}\|^2 - 2\overrightarrow{u} \cdot \overrightarrow{v} + \|\overrightarrow{v}\|^2$$

3.
$$(\overrightarrow{u} + \overrightarrow{v}) \cdot (\overrightarrow{u} - \overrightarrow{v}) = ||\overrightarrow{u}||^2 - ||\overrightarrow{v}||^2$$

Remarque

On reconnaît dans les deux premières identités les expressions du produit scalaire avec les normes, il suffit d'isoler $\overrightarrow{u} \cdot \overrightarrow{v}$ pour s'en convaincre.

3