Correction de l'interrogation de mathématiques n° 4 Sujet 1

Exercice 1 (12 points)

Partie 1

Soit g la fonction définie sur \mathbb{R} par $g(x) = e^x - xe^x + 1$.

1. Déterminer la limite de q en $-\infty$.

Limite en $-\infty$.

$$\lim_{x \to -\infty} e^x = 0.$$

D'après le cours, $\lim_{x \to -\infty} x e^x = 0$.

Par somme,
$$\lim_{x \to -\infty} g(x) = 1$$
.

D'où une asymptote horizontale à C_q en $-\infty$ d'équation y=1.

2. Déterminer la limite de g en $+\infty$. $g(x) = (1-x)e^x + 1$. $\lim_{x \to +\infty} 1 - x = -\infty$, et $\lim_{x \to +\infty} e^x = +\infty$.

$$\lim_{+\infty} 1 - x = -\infty, \text{ et } \lim_{+\infty} e^x = +\infty.$$
 Par produit et somme,
$$\lim_{x \to +\infty} g(x) = -\infty.$$

3. Étudier les variations de g sur $\mathbb R$ et donner son tableau de variation.

La fonction g est dérivable sur \mathbb{R} et pour tout $x \in \mathbb{R}$, $g'(x) = e^x - (e^x + xe^x) = -xe^x$.

Comme pour tout $x \in \mathbb{R}$, $e^x > 0$, g'(x) est du signe de -x.

x	$-\infty$		0		$+\infty$
g'(x)		+	0	_	
g(x)	1	/	2		$-\infty$

$$g(0) = 1 - 0 + 1 = 2.$$

- 4. (a) Montrer que l'équation g(x)=0 admet une unique solution α sur $[0;+\infty[$. On note α cette solution.
 - La fonction g est continue car dérivable sur $[0; +\infty[$;
 - La fonction g est strictement décroissante sur $[0; +\infty[$, car g'(x) < 0 pour x > 0 et g'(0) = 0;

— la fonction g change de signe puisque g(0)=2>0 et $\lim_{x\to +\infty}g(x)=-\infty.$

D'après le corollaire du théorème des valeurs intermédiaires, l'équation g(x) = 0 admet une unique solution α dans $[0; +\infty[$.

(b) À l'aide de la calculatrice, déterminer un encadrement de α d'amplitude 10^{-2} .

Par balayage, on obtient $1, 27 < \alpha < 1, 28$.

(c) Démontrer que $e^{\alpha} = \frac{1}{\alpha - 1}$.

$$g(\alpha) = 0$$

$$(1 - \alpha)e^{\alpha} + 1 = 0$$

$$e^{\alpha}(\alpha - 1) = 1$$

$$e^{\alpha} = \frac{1}{\alpha - 1}$$

L'écriture de $\frac{1}{\alpha - 1}$ a du sens car on sait que $\alpha \neq 1$.

5. Déterminer le signe de g(x) suivant les valeurs de x. D'après les variations de g et le fait que $g(\alpha) = 0$,

x	$-\infty$		α		$+\infty$
g(x)		+	0	_	

Partie 2

Soit A la fonction définie et dérivable sur $[0; +\infty[$ par $A(x) = \frac{4x}{e^x + 1}$.

1. Démontrer que, pour tout x positif ou nul, A'(x) a le même signe que g(x) où g est la fonction étudiée dans la partie 1. Comme $e^x + 1 > 0$, la fonction A est définie et dérivable sur $[0; +\infty[$.

$$A'(x) = \frac{4(e^x + 1) - 4x(e^x)}{(e^x + 1)^2}$$
$$= \frac{4e^x + 4 - 4xe^x}{(e^x + 1)^2}$$
$$= \frac{4g(x)}{(e^x + 1)^2}$$

- Comme $(e^x + 1)^2 > 0$ et 4 > 0, A'(x) est du signe de g(x).
- 2. En déduire les variations de la fonction A sur $[0; +\infty[$.

x	0		α		$+\infty$
A'(x)		+	0	_	
A(x)	0	/	$A(\alpha)$	\	0

On a
$$A(0) = \frac{0}{2} = 0$$
.
 $A(\alpha) \approx 1, 11$.
 $A(x) = \frac{x}{e^x} \times \frac{4}{1 + e^{-x}}$.
Comme $\lim_{t \to \infty} \frac{e^x}{x} = +\infty$, on a $\lim_{x \to +\infty} A(x) = 0 \times 4 = 0$.

Exercice 2 (5 points)

Les questions sont indépendantes.

- 1. Soit f la fonction définie sur \mathbb{R} par $f(x) = e^{-3x}$.
 - (a) Déterminer les limites de f en $+\infty$ et $-\infty$. Justifier. $\lim_{x \to +\infty} -3x = -\infty, \text{ donc } \lim_{x \to +\infty} e^{-3x} = 0.$ $\lim_{x \to -\infty} -3x = +\infty, \text{ donc } \lim_{x \to -\infty} e^{-3x} = +\infty.$
 - (b) Calculer f'(x). Pour tout $x \in \mathbb{R}$, $f'(x) = -3e^{-3x}$
- 2. Déterminer $\lim_{x \to +\infty} \frac{\mathrm{e}^{2x+1}}{x}$.

 Pour tout $x \neq 0$, $\frac{\mathrm{e}^{2x+1}}{x} = \frac{\mathrm{e}^{2x} \times \mathrm{e}^1}{x} = \frac{\mathrm{e}^x}{x} \times \mathrm{e}^x \times \mathrm{e}^x$.

 On sait que $\mathrm{e} > 0$, que $\lim_{x \to +\infty} \frac{\mathrm{e}^x}{x} = +\infty$ et $\lim_{x \to +\infty} \mathrm{e}^x = +\infty$.

 Par produit, $\lim_{x \to +\infty} \frac{\mathrm{e}^{2x+1}}{x} = +\infty$.
- 3. Montrer que pour tout réel $x \neq 0$,

$$\frac{e^x}{e^x - 1} - \frac{e^x}{e^x + 1} = \frac{2}{e^x - e^{-x}}.$$

$$\frac{e^x}{e^x - 1} - \frac{e^x}{e^x + 1} = \frac{e^x(e^x + 1) - e^x(e^x - 1)}{(e^x + 1)(e^x - 1)}$$

$$= \frac{e^x[e^x + 1 - e^x - (-1)]}{e^{2x} - 1}$$

$$= \frac{2e^x}{e^x(e^x - e^{-x})}$$

$$= \frac{2}{e^x - e^{-x}}$$

Exercice 3 (3 points)

- 1. Soit f la fonction définie sur \mathbb{R} par $f(x) = x^2 5x + 1$.
 - (a) Donner une primitive de f sur \mathbb{R} . $F(x) = \frac{x^3}{2} \frac{5}{2}x^2 + x.$
 - (b) En déduire la primitive de f qui vaut 1 en -2. Les primitives de f sont de la forme $F_k(x)=\frac{x^3}{3}-\frac{5}{2}x^2+x+k$ où $k\in\mathbb{R}$. $F_k(-2)=1$ ssi $\frac{-8}{3}-10-2+k=1$, soit $k=\frac{47}{3}$. La primitive cherchée est définie par $F(x)=\frac{x^3}{3}-\frac{5}{2}x^2+x+k$ $x+\frac{47}{3}$.
- 2. Donner une primitive sur \mathbb{R} de chacune des fonctions suivantes. Aucune justification n'est attendue.

(a)
$$a(x) = \frac{6x}{\sqrt{3x^2 + 1}}$$
.
 $A(x) = 2\sqrt{3x^2 + 1}$.

(b)
$$b(x) = x(4x^2 - 3)^6$$
.
 $B(x) = \frac{1}{56} \times (4x^2 - 3)^7$.

Sujet 2

Exercice 4

Voir sujet 1

Exercice 5 (5 points)

Les questions sont indépendantes.

1. Soit f la fonction définie sur \mathbb{R} par

$$f(x) = e^{3x-1}.$$

- (a) Déterminer les limites de f en $+\infty$ et $-\infty$. Justifier. $\lim_{\substack{x\to +\infty\\ x\to -\infty}} \mathrm{e}^{3x-1} = +\infty.$ $\lim_{\substack{x\to -\infty}} \mathrm{e}^{3x-1} = 0.$
- (b) Calculer f'(x). $f'(x) = 3e^{3x-1}.$
- 2. Déterminer $\lim_{x \to +\infty} \frac{\mathrm{e}^x}{x-3}$.

 Pour tout $x \neq 3$, $\frac{\mathrm{e}^x}{x-3} = \frac{\mathrm{e}^{x-3}}{x-3} \times \mathrm{e}^3$.

 D'où, par composée et produit, $\lim_{x \to +\infty} \frac{\mathrm{e}^x}{x-3} = +\infty$.
- 3. Montrer que pour tout réel $x \neq 0$,

$$\frac{e^x}{e^x - 1} - \frac{e^x}{e^x + 1} = \frac{2}{e^x - e^{-x}}.$$

Voir sujet 1.

Exercice 6 (3 points)

- 1. Soit f la fonction définie sur \mathbb{R} par $f(x) = 5x^3 x + 11$.
 - (a) Donner une primitive de f sur \mathbb{R} . $F(x) = \frac{5}{4}x^4 \frac{1}{2}x^2 + 11x.$
 - (b) En déduire la primitive de f qui vaut 1 en -2. Les primitives de f sont de la forme $F_k(x)=\frac{5}{4}x^4-\frac{1}{2}x^2+11x+k$ où $k\in\mathbb{R}$. $F_k(-2)=1$ ssi 20-2-22+k=1, soit k=5. La primitive cherchée est définie par $F(x)=\frac{5}{4}x^4-\frac{1}{2}x^2+11x+5$.
- 2. Donner une primitive sur \mathbb{R} de chacune des fonctions suivantes. Aucune justification n'est attendue.

(a)
$$a(x) = \frac{x}{\sqrt{6x^2 + 5}}$$
.
 $A(x) = \frac{1}{6} \times \sqrt{6x^2 + 5}$.

(b)
$$b(x) = 2x(x^2 - 1)^3$$
.
 $B(x) = \frac{1}{4}(x^2 - 1)^4$.