CRSA1. Interrogation no 3. Correction

Exercice 1 (3 points)

Résoudre dans \mathbb{R} les équations et inéquations suivantes :

1.
$$3(x-15)(x+2) = 0$$

 $x-15 = 0$ ou $x+2 = 0$.
 $x = 15$ ou $x = -2$.

Donc
$$S = \{15; -2\}.$$

$$2. \ 5x^2 - 9x + 4 = 0.$$

$$\Delta = b^{2} - 4ac = (-9)^{2} - 4 \times 5 \times 4 = 81 - 80 = 1 > 0.$$

$$x_{1} = \frac{-b - \sqrt{\Delta}}{2a} = \frac{9 - 1}{10} = 0, 8.$$

$$x_{2} = \frac{-b + \sqrt{\Delta}}{2a} = \frac{9 + 1}{10} = 1.$$

$$x_{3} = \frac{-b + \sqrt{\Delta}}{2a} = \frac{9 + 1}{10} = 1.$$

Exercice 2 (4 points)

On pose, pour tout $x \in \mathbb{R}$, $f(x) = 2x^2 - x - 15$.

1. Résoudre dans \mathbb{R} l'équation f(x) = 0.

$$\Delta = b^{2} - 4ac = (-1)^{2} - 4 \times 2 \times (-15) = 1 + 120 = 121 = 11^{2} > 0.$$

$$x_{1} = \frac{-b - \sqrt{\Delta}}{2a} = \frac{1 - 11}{4} = -2, 5.$$

$$x_{2} = \frac{-b + \sqrt{\Delta}}{2a} = \frac{1 + 11}{4} = 3.$$
Donc $S = \{-2, 5; 3\}.$

2. En déduire le tableau de signe de f(x) sur \mathbb{R} . Justifier (on pourra rappeler la propriété utilisée).

Lorsque $\Delta > 0$, le trinôme prend le signe de a à l'extérieur des racines. Ici, a = 2 > 0.

x	$-\infty$		-2, 5		3		$+\infty$
f(x)		+	0	_	0	+	

3. Donner l'ensemble solution de l'inéquation $2x^2 - x - 15 \leq 0$. S = [2, 5; 3].

Exercice 3 (1 point)

x	$-\infty$		2		6		$+\infty$
g(x)		_	0	+	0	_	

Donner l'expression d'une fonction g compatible avec ce tableau de signe.

$$g(x) = -7(x-2)(x-6)$$
 convient.

g(x) = -7(x-2)(x-6) convient. Forme factorisée $a(x-x_1)(x-x_2)$, avec 2 et 6 comme racines, et l'on choisit un a < 0.

Exercice 4 (3 points)

Compléter directement sur l'énoncé. Aucune justification n'est attendue.

- 1. Soit $E = \text{bar}\{(A, 2); (B, 5)\}$. Alors $\overrightarrow{AE} = \frac{5}{7}\overrightarrow{AB}$.
- 2. Si $\overrightarrow{AG} = \frac{4}{5}\overrightarrow{AB}$, alors G est le barycentre de (A, 1) et (B, 4).
- 3. I est le milieu de [CD]. Le point C est le barycentre de (I,2) et (D,-1).

Exercice 5 (4 points)

Dans un repère de l'espace, on considère les points A(1;0;3), B(0;-2;4) et C(2;-2;5).

1

1. Calculer les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{AC} .

$$\overrightarrow{AB} \begin{pmatrix} x_B - x_A \\ y_B - y_A \\ z_B - z_A \end{pmatrix}$$
, soit $\overrightarrow{AB} \begin{pmatrix} -1 \\ -2 \\ 1 \end{pmatrix}$. De même, $\overrightarrow{AC} \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$.

2. Les points $A,\,B$ et C sont-ils alignés? Justifier.

Les coordonnées ne sont pas proportionnelles : $-2 \times 2 \neq -2 \times 1$.

Donc \overrightarrow{AB} et \overrightarrow{AC} ne sont pas colinéaires.

Donc les points A, B, C ne sont pas alignés.

3. Calculer les coordonnées du barycentre H du système de points $(A,3),\,(B,2),\,(C,5).$

H existe car
$$3 + 2 + 5 = 10 \neq 0$$
.

$$x_H = \frac{3x_A + 2x_B + 5x_C}{2 + 3 + 5} = \frac{3 + 0 + 10}{10} = 1, 3.$$

$$y_H = \frac{3y_A + 2y_B + 5y_C}{2 + 3 + 5} = \frac{0 - 4 - 10}{10} = -1, 4.$$

$$z_H = \frac{3z_A + 2z_B + 5z_C}{2 + 3 + 5} = \frac{9 + 8 + 25}{10} = 4, 2.$$

Ainsi,
$$H(1,3;-1,4;4,2)$$
.

Exercice 6 (6 points)

On considère 3 points A, B et C de l'espace.

1. On note K le barycentre (A, 1) et (B, 3). Exprimer \overrightarrow{AK} en fonction de \overrightarrow{AB} .

$$K$$
 existe car $1+3=4\neq 0$.

$$\overrightarrow{AK} = \frac{b}{a+b}\overrightarrow{AB} = \frac{3}{1+3}\overrightarrow{AB} = \frac{3}{4}\overrightarrow{AB}.$$

2. On note H le barycentre de (A,1), (B,3) et (C,4).

Justifier que H est le milieu de [CK].

Par associativité du barycentre,

 $H = \text{bar}\{(A, 1); (B, 3); (C, 4)\} = \text{bar}\{(K, 4); (C, 4)\}.$

Donc H est l'isobarycentre de K et C, c'est le milieu du segment [KC].

3. Construire les points K et H en laissant des traits de construction.

4. Construire le point E barycentre de (A, 2), (B, 2) et (C, -3).

On introduit le point $I = bar\{(A, 2); (B, 2)\}.$

I existe car $2+2=4\neq 0$. Et I est le mileu de [AB] (isobarycentre de A et B).

Par associativité, $E = bar\{(I, 4); (C, -3)\}.$

Donc
$$\overrightarrow{IE} = \frac{-3}{-3+4}\overrightarrow{IC} = -3\overrightarrow{IC}$$
. Cela permet de construire le point E .

