Chapitre 3 : Les fonctions. Étude de la fonction inverse

Rappels sur la dérivation Ι

Généralités sur les fonctions

Définition

Soit f une fonction définie sur un intervalle I de \mathbb{R} . Soit $a \in I$.

Soit h un nombre réel proche de 0 tel que $a + h \in I$.

On dit que f est dérivable en a si le taux d'accroissement $\frac{f(a+h)-f(a)}{h}$ admet une limite réelle lorsque h tend vers 0.

Ce nombre est alors appelé le nombre dérivé de f en a, noté f'(a).

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Remarque

Le nombre dérivé de f en a peut se noter $\left(\frac{df}{dx}\right)(a)$.

Définition

La tangente à la courbe de f au point A d'abscisse a est la droite passant par A et de coefficient directeur f'(a).

Propriété

Soit f une fonction dérivable en un réel a.

Au point d'abscisse a la tangente à la courbe de f a pour équation :

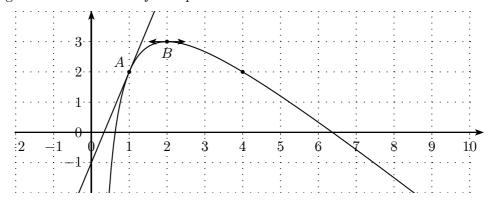
$$y = f'(a)(x - a) + f(a)$$

Remarque

Si f'(a) = 0, la tangente est parallèle à l'axe des absicsse, on dit que c'est une tangente "horizontale".

Exercice 1

On donne ci-dessous la courbe représentative d'une fonction f définie et dérivable sur $]0;+\infty[$. On a tracé les tangentes à la courbe de f aux points A et B.



- 1. Lire graphiquement f(1) et f(2).
- 2. Déterminer graphiquement f'(1) et f'(2).
- 3. On admet que $f'(4) = -\frac{3}{4}$. Tracer la tangente à la courbe de f au point d'abscisse 4. Aucune justification n'est attendue.

1

4. Déterminer par le calcul une équation de la tangente T_4 au point d'abscisse 4.

I.2 Dérivée d'une fonction

Définition

Soit f un fonction définie sur un intervalle I. On dit que f est dérivable sur I si elle est dérivable en tout réel de I, c'est-à-dire si pour tout $x \in I$, f'(x) existe.

Alors la fonction dérivée de f est la fonction $f': x \mapsto f'(x)$.

Théorème (Dérivées des fonctions usuelles)

Fonction f	Dérivée f'	Intervalle de validité
f(x) = c (fonction constante)	f'(x) =	$I=\mathbb{R}$
f(x) = x	f'(x) =	$I = \mathbb{R}$
f(x) = ax + b	f'(x) =	$I = \mathbb{R}$
$f(x) = x^2$	f'(x) =	$I=\mathbb{R}$
$f(x) = x^3$	f'(x) =	$I=\mathbb{R}$
$f(x) = x^n, n \geqslant 1$	$f'(x) = nx^{n-1}$	$I=\mathbb{R}$
$f(x) = \frac{1}{x}$	f'(x) =	$I =]-\infty;0[\text{ ou }]0;+\infty[$
$f(x) = \cos(x)$	f'(x) =	$I=\mathbb{R}$
$f(x) = \sin(x)$	f'(x) =	$I=\mathbb{R}$

I.3 Opérations sur les fonctions dérivables

Théorème

Soient u et v des fonctions dérivables sur un intervalle I, soit $k \in \mathbb{R}$. Alors :

1. Somme de fonctions.

La fonction (u+v) est dérivable sur I et (u+v)'=.

2. Produit par un nombre réel.

Soit $k \in \mathbb{R}$. La fonction $(k \times u)$ est dérivable sur I et $(k \times u)' =$.

3. Produit de fonctions.

La fonction $(u \times v)$ est dérivable sur I et $(u \times v)' =$.

4. Inverse et quotient.

Si v ne s'annule pas sur I (c'est-à-dire $\forall x \in I, v(x) \neq 0$), alors

— la fonction $\frac{1}{v}$ est dérivable sur I et

$$\left(\frac{1}{v}\right)' = 0$$

— la fonction $\frac{u}{v}$ est dérivable sur I et

$$\left(\frac{u}{v}\right)' =$$

5. Dérivée de u^n .

Soit n un entier relatif.

Si $n \leq -1$ et u ne s'annule pas, ou si $n \geq 2$, la fonction u^n est dérivable sur I et

$$(u^n)' = nu'u^{n-1}.$$

Propriété (fonctions trigonométriques utilisées en électricité)

On considère deux nombres réels ω (représentant la pulsation en rad.s⁻¹) et φ (représentant la phase à l'origine en rad). La variable t représente le temps exprimé en s.

Les fonctions sont dérivables sur \mathbb{R} et

Fonction f	Fonction dérivée f'
$f(t) = \cos(\omega t + \varphi)$	$f'(t) = -\omega \sin(\omega t + \varphi)$
$f(t) = \sin(\omega t + \varphi)$	$f'(t) = \omega \cos(\omega t + \varphi)$

Exercice 2

Calculer la dérivée des fonctions suivantes.

- 1. f est définie sur \mathbb{R} par $f'(x) = x^2 + \sin x$.
- 2. f est définie sur \mathbb{R} par $f(x) = (3x 1)\cos x$.
- 3. f est définie sur $]5; +\infty[$ par $f(x) = \frac{1}{2x 10}$.
- 4. g est définie sur \mathbb{R} par $f(x) = \frac{1}{x^2 + 1}$.
- 5. h est définie sur $]1; +\infty[$ par $h(x) = \frac{4x+1}{3x-3}$.
- 6. f est définie sur \mathbb{R} par $f(t) = \cos(5t + \pi)$.
- 7. k est définie sur \mathbb{R} par $k(x) = (2x+4)^5$.

Théorème (fondamental, admis)

Soit f une fonction dérivable sur un intervalle I.

- 1. f est croissante sur I si et seulement si f' est positive sur I.
- 2. f est décroissante sur I si et seulement si f' est négative sur I.
- 3. f est constante sur I si et seulement si f' = 0 sur I.

Méthode pour étudier les variations d'une fonction :

- 1. Calculer la dérivée f'(x).
- 2. étudier le signe de la dérivée f'(x) (chercher les racines, factoriser)
- 3. dresser le tableau de variation de f.

Exercice 3

Étudier les variations de la fonction f définie sur \mathbb{R} par $f(x) = x^3 - 3x$.

II La fonction inverse

Définition

La fonction inverse est la fonction f définie pour tout réel x non nul par $f(x) = \frac{1}{x}$. Son ensemble de définition est $D = \mathbb{R}^* =]-\infty; 0[\cup]0; +\infty[$.

Remarque

La fonction inverse n'est pas définie en 0 car on ne peut pas diviser pas 0. On dit que 0 est valeur interdite pour cette fonction.

3

Propriété

La fonction inverse est dérivable sur \mathbb{R}^* , et pour tout $x \neq 0$, $f'(x) = -\frac{1}{x^2}$

Pour tout réel $x \neq 0$, $x^2 > 0$, donc f'(x) < 0.

Sur les intervalles où elle est définie, la fonction inverse est donc strictement décroissante.

Théorème

La fonction inverse est strictement décroissante sur l'intervalle $]-\infty;0[$, et strictement décroissante sur l'intervalle $]0;+\infty[$.

x	$-\infty$ ($+\infty$
f'(x)	_	_
$\frac{1}{x}$		

II.1 Comportement aux bornes de l'ensemble de définition

On s'intéresse au comportement de la fonction inverse $f: x \mapsto \frac{1}{x}$ et lorsque x devient très grand $(x \text{ tend vers } +\infty)$ ou très petit $(\text{vers } -\infty)$.

Tableau de valeurs :

x	-10^{6}	-10^{4}	-10^{2}	-10	10	10^{2}	10^{4}	10^{6}
1								
x								

Voisinage de l'infini

On remarque que lorsque x devient très grand, les valeurs de $\frac{1}{x}$ deviennent très proches de 0. On dit que la fonction $x\mapsto \frac{1}{x}$ admet 0 pour limite en $+\infty$ (ou tend vers 0 en $+\infty$). On note $\lim_{x\to +\infty}\frac{1}{x}=0$. Lorsque x tend vers $-\infty$, on a : $\lim_{x\to -\infty}\frac{1}{x}=0$.

Au voisinage de 0

1. Si x > 0: lorsque x prend des valeurs proches de 0 en étant à droite de 0, les valeurs de f(x) deviennent infiniment grandes.

Nous dirons donc que f admet $+\infty$ comme limite à droite lorsque x tend vers 0.

Notation:
$$\lim_{\substack{x\to 0\\x>0}} f(x) = +\infty$$
 ou bien $\lim_{x\to 0+} f(x) = +\infty$

2. Si x < 0: lorsque x prend des valeurs proches de 0 en étant à gauche de 0, les valeurs de f(x) deviennent infiniment petites.

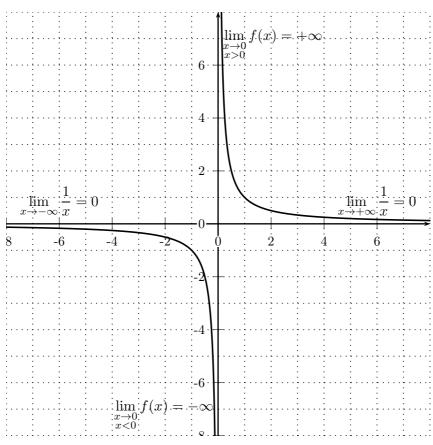
De même, nous dirons que f admet $-\infty$ comme limite à gauche lorsque x tend vers 0.

4

Notation :
$$\lim_{\substack{x \to 0 \\ x < 0}} f(x) = -\infty$$
 ou bien $\lim_{\substack{x \to 0-}} f(x) = -\infty$

- Propriété (limites de la fonction inverse) 1. A l'infini, on a $\lim_{x\to +\infty}\frac{1}{x}=0$, et $\lim_{x\to -\infty}\frac{1}{x}=0$
 - 2. Pour les limites en 0, on a $\lim_{\substack{x\to 0\\x>0}} f(x) = +\infty$, et $\lim_{\substack{x\to 0\\x<0}} f(x) = -\infty$.

Représentation graphique de la fonction inverse $f(x) = \frac{1}{x}$



Remarque

La courbe représentative de la fonction inverse est une hyperbole.

L'origine du repère est centre de symétrie de la courbe (fonction impaire).

Définition

- 1. Comme $\lim_{x\to +\infty} \frac{1}{x} = 0$ et $\lim_{x\to -\infty} \frac{1}{x} = 0$, on dit que la droite d'équation y=0 (l'axe des abscisses) est asymptote horizontale à la courbe de f en $+\infty$ et $-\infty$.
- 2. De même, l'axe des ordonnées d'équation x = 0 est asymptote verticale à la courbe de f en 0.

On retiendra le tableau de variation complet (avec les limites):

x	$-\infty$	0	$+\infty$
$f(x) = \frac{1}{x}$	0	$-\infty$	+∞ 0

5