Interrogation n° 3 Sujet 1

Exercice 1 (1 point)

Soit f une fonction définie sur un intervalle I. Soit $a \in I$. Donner la définition du fait que f est dérivable en a.

Exercice 2 (4 points)

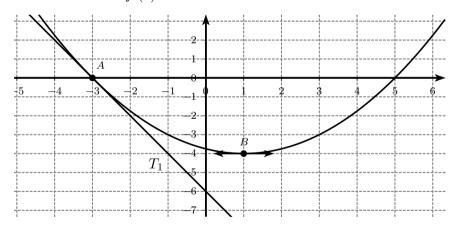
Soit f la fonction définie sur \mathbb{R} par $f(x) = x^2 - 5x$

- 1. En revenant à la définition, étudier la dérivabilité de f en 2, et montrer que f'(2) = -1.
- 2. En déduire une équation de la tangente à la courbe représentative de f au point d'abscisse 2.

Exercice 3 (2 points)

On a tracé ci-contre la courbe représentative d'une fonction f définie et dérivable sur \mathbb{R} . La droite T_1 est tangente à la courbe en A, et la courbe admet une tangente parallèle à l'axe des abscisses au point B.

- 1. Déterminer f'(-3). Justifier.
- 2. Déterminer f'(1). Justifier.



Exercice 4 (3 points)

- 1. Montrer que la fonction inverse définie pour tout $x \neq 0$ par $f(x) = \frac{1}{x}$ est dérivable en tout réel a non nul et que $f'(a) = \frac{-1}{a^2}$.
- 2. En déduire que la courbe de la fonction inverse admet en deux points une tangente parallèle à la droite d'équation $y = -\frac{1}{4}x + 3$ et préciser les abscisses de ces deux points.

Interrogation n° 3 Sujet 2

Exercice 5 (1 point)

Donner l'équation de la tangente à la courbe de f au point d'abscisse a pour une fonction f dérivable en a.

Exercice 6 (4 points)

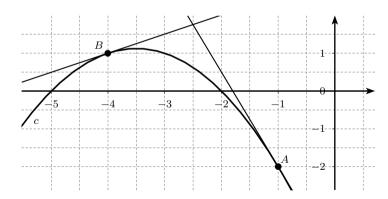
Soit f la fonction définie sur \mathbb{R} par $f(x) = 3x^2 + x$

- 1. En revenant à la définition, étudier la dérivabilité de f en -1, et montrer que f'(-1) = -5.
- 2. En déduire une équation de la tangente à la courbe représentative de f au point d'abscisse -1.

Exercice 7 (2 points)

On a tracé ci-contre la courbe représentative d'une fonction f définie et dérivable sur \mathbb{R} , et les tangentes à cette courbe aux points A et B.

- 1. Déterminer f'(-4). Justifier.
- 2. Déterminer f'(-1). Justifier.



Exercice 8 (3 points)

- 1. Montrer que la fonction inverse définie pour tout $x \neq 0$ par $f(x) = \frac{1}{x}$ est dérivable en tout réel a non nul et que $f'(a) = \frac{-1}{a^2}$.
- 2. En déduire que la courbe de la fonction inverse admet en deux points une tangente parallèle à la droite d'équation $y = -\frac{1}{4}x + 3$ et préciser les abscisses de ces deux points.