Chapitre 2 : Limites de suites

I Suite convergeant un réel ℓ

Définition

Soient (u_n) une suite numérique et ℓ un nombre réel.

On dit que (u_n) admet pour limite ℓ (ou converge vers ℓ) lorsque tout intervalle ouvert contenant ℓ contient tous les termes de la suite à partir d'un certain rang.

On note alors $\lim u_n = \ell$.

Formulation symbolique:

Pour tout $\varepsilon > 0$, il existe $N \in \mathbb{N}$ tel que pour tout $n \ge N$, $|u_n - \ell| < \varepsilon$.

Remarque

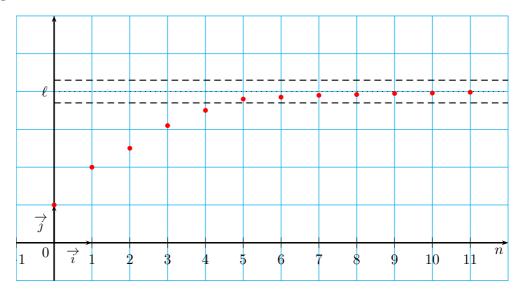
L'écriture $|u_n-\ell|<\varepsilon$ signifie que l'écart entre u_n et ℓ est strictement inférieur à ε . Autrement dit,

$$|u_n - \ell| < \varepsilon \iff u_n \in]\ell - \varepsilon; \ell + \varepsilon[$$

 $\Leftrightarrow \ell - \varepsilon < u_n < \ell + \varepsilon$

Illustration:

Le graphique ci-dessous représente une suite (u_n) qui converge vers $\ell=4$. En prenant $\varepsilon=0.3>0$, on constate que l'inégalité $|u_n-\ell|<\varepsilon$ est vérifiée à partir du rang N=5.



Remarque

Il est inutile de préciser $n \to +\infty$ car c'est toujours le cas dans ce chapitre. On note simplement $\lim u_n = \ell$ pour désigner $\lim_{n \to +\infty} u_n = \ell$.

Propriété (limites usuelles)
Les suites $\left(\frac{1}{n}\right)$, $\left(\frac{1}{\sqrt{n}}\right)$, $\left(\frac{1}{n^k}\right)$ où k est un entier supérieur où égal à 1 convergent vers 0.

On montre que la suite $\left(\frac{1}{n}\right)$ converge vers 0. Soit a>0, on considère l'intervalle ouvert centré en

Pour tout $n > \frac{1}{a}$, on a $0 < \frac{1}{n} < a$, et donc $\frac{1}{n}$ appartient à I. L'intervalle I contient tous les termes de la suite à partir d'un certain rang.

Donc $\lim \frac{1}{n} = 0$.

Remarque

- 1. Une suite constante converge vers la valeur de la constante.
- 2. Il existe des suites qui ne sont pas convergentes (on dit alors divergentes).

Exemple : la suite définie par $u_n = (-1)^n$ n'a pas de limite.

Les suites $(\cos n)$ et $(\sin n)$ n'ont pas de limite. Elles sont divergentes.

Théorème

Si une suite est convergente, sa limite est unique.

\mathbf{II} Suites ayant une limite infinie

Définition

On dit que la suite (u_n) a pour limite $+\infty$ (ou diverge vers $+\infty$) si tout intervalle du type $[A; +\infty[$ contient tous les termes de la suite à partir d'un certain rang.

On note alors $\lim u_n = +\infty$.

On a un énoncé analogue pour un suite qui diverge vers $-\infty$.

Propriété

Les suites (n^2) , (\sqrt{n}) , (n^k) où k est un entier supérieur où égal à 1 divergent vers $+\infty$.

II.1 Lien avec les limites de fonctions

Théorème (suite définie par son terme général)

Soit (u_n) une suite définie par son terme général $u_n = f(n)$ où f est une fonction définie sur un intervalle $[M; +\infty[$.

- 1. si $\lim_{x \to +\infty} f(x) = \ell \in \mathbb{R}$, alors $\lim u_n = \ell$.
- 2. si $\lim_{x \to +\infty} f(x) = +\infty$, alors $\lim u_n = +\infty$.
- 3. si $\lim_{x \to +\infty} f(x) = -\infty$, alors $\lim u_n = -\infty$.

On peut donc utiliser les limites en $+\infty$ de fonctions de référence pour déterminer les limites de suites usuelles.

2

III Algorithmes de recherche de seuil

III.1 Recherche de seuil dans le cas d'une suite qui diverge vers $+\infty$

Considérons la suite (u_n) définie par $u_n = n^2$.

Il est clair que $\lim u_n = +\infty$.

On cherche le plus petit entier N tel que pour tout $n \ge N$, $n^2 \ge 10^7$.

— Méthode 1 : on résout l'inéquation $n^2 \ge 10^7$

Comme n est un entier positif, cela implique $n \ge \sqrt{10^7} \approx 3162, 3$.

Le plus petit entier qui convient est donc N=3163.

Parfois, on sera confronté à des inéquations qu'on ne sait pas résoudre, et il faudra se tourner vers la méhode 2.

— Méthode 2 : à l'aide d'un algorithme.

DÉBUT

```
n prend la valeur 0
U prend la valeur n^2
Tant que U < 10^7,
n prend la valeur n+1
n prend la valeur n^2
Fin Tant que
Afficher n
```

Fin

Le programme renvoie 3163.

Exercice 1

Considérons la suite (u_n) définie pour tout entier $n \in \mathbb{N}$ par $u_n = n \times \sqrt{n}$.

- 1. Montrer que (u_n) est croissante.
- 2. On admet que $\lim u_n = +\infty$. Écrire un algorithme qui renvoie le plus petit entier n_0 tel que pour tout $n \ge n_0$, $u_n \ge 10^4$ (voir livre page 14).
- 3. Programmer l'algorithme à la calculatrice et donner la valeur de n_0^{-1} .

Exercice 2

Un verre d'eau contient 50 bactéries à l'heure n=0. On admet que le nombre de bactéries triple toutes les heures.

On note (u_n) le nombre de bactéries au bout de n heures (ainsi, $u_0 = 50$).

- 1. Calculer u_1 , u_2 et u_3 .
- 2. Exprimer u_{n+1} en fonction de u_n .
- 3. Déterminer le nombre de bactéries au bout de 10 heures à l'aide de la calculatrice.
- 4. Utiliser un algorithme pour déterminer le nombre d'heures à partir duquel il y a plus d'un billion $(10^{12}$, soit 1000 milliards) de bactéries.

III.2 Cas d'une suite convergeant vers un réel ℓ

Exercice 3

Soit (a_n) la suite définie par son premier terme $a_0 = 2$ et la relation de récurrence :

^{1.} On doit trouver $n_0 = 465$

pour tout
$$n \ge 0$$
, $a_{n+1} = \frac{2}{3}a_n + 3$.

- 1. Calculer à la main a_1 , a_2 et a_3 . Rédiger les calculs.
- 2. Utiliser la calculatrice pour donner une valeur approchée de $a_{10},\,a_{20},$ et $a_{30}.$ On arrondira à 0,0001 près.
- 3. Que peut-on conjecturer sur la convergence de la suite (a_n) ?
- 4. Écrire un algorithme qui renvoie le plus petit entier n_0 tel que $|a_{n_0}-9|<0,0001$.
- 5. Programmer cet algorithme à la calculatrice et indiquer la valeur de n_0 .

IV Opérations sur les limites

Tous les résultats suivants sont admis. Soient (u_n) et (v_n) deux suites convergentes ou divergeant vers l'infini. ℓ et ℓ' sont des nombres réels.

IV.1 Limite d'une somme

Si $\lim u_n =$	ℓ	ℓ	ℓ	$+\infty$	$-\infty$	$+\infty$
et si $\lim v_n =$	ℓ'	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$-\infty$
Alors $\lim(u_n + v_n) =$						

Exemple: $\lim_{n \to \infty} n + \frac{1}{n}$

IV.2 Limite d'un produit

Si $\lim u_n =$	ℓ	$\ell > 0$	$\ell > 0$	$\ell < 0$	$\ell < 0$	$+\infty$	$+\infty$	$-\infty$	0
et si $\lim v_n =$	ℓ'	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$-\infty$	$+\infty$ ou
		1 3 3		1 00		1 30			$-\infty$
Alors,									
$\lim(u_n \times v_n) =$									

Exemple : $\lim_{+\infty} 3n^2 \sqrt{n}$

IV.3 Limite d'un quotient

IV.3.a cas où la limite de (v_n) n'est pas nulle

Si $\lim u_n =$	ℓ	ℓ	$+\infty$	$+\infty$	$-\infty$	$-\infty$	$+\infty$
							ou $-\infty$
et si $\lim v_n =$	$\ell' \neq 0$	$+\infty$	$\ell' > 0$	$\ell' < 0$	$\ell' > 0$	$\ell' < 0$	$+\infty$
		ou −∞					ou −∞
Alors $\lim \frac{u_n}{v_n} =$							

IV.3.b cas où la limite de (v_n) est nulle

Si $\lim u_n =$	$\ell > 0$	$\ell > 0$	$\ell < 0$	$\ell < 0$	0
	ou $+\infty$	ou $+\infty$	ou −∞	ou −∞	
et si $\lim v_n =$	0	0	0	0	0
	en restant	en restant	en restant	en restant	
	positive	négative	positive	négative	
Alors $\lim \frac{u_n}{v_n} =$					

Exemple: $\lim_{-\infty} \frac{4n}{3n^2 \sqrt{n}}$

Remarque (Récapitulatif des formes indéterminées)

- 1. $+\infty \infty$,
- $2. \pm \infty \times 0,$
- 3. $\frac{0}{0}$,
 4. $\frac{\pm \infty}{\pm \infty}$.

Indication pour lever les indéterminations

Transformer l'écriture, développer ou factoriser.

Mettre en facteur le terme prépondérant (plus grande puissance de n) au numérateur et au dénominateur.

V Théorèmes de comparaison

Théorème (théorèmes des gendarmes)

1. Théorème des gendarmes.

Soient (u_n) , (v_n) et (w_n) trois suites réelles, soit $\ell \in \mathbb{R}$.

Si.

- à partir d'un certain rang, on a $u_n \leq v_n \leq w_n$,
- et $\lim u_n = \ell$, et $\lim w_n = \ell$,

alors (v_n) converge vers ℓ .

Démonstration

Soit $p \in \mathbb{N}$ tel que pour tout $n \ge p$, $u_n \le v_n \le w_n$.

Soit I =]a; b[un intervalle ouvert contenant ℓ .

Comme $\lim_{n\to+\infty}u_n=\ell$, alors à partir d'un certain ranq q, tous les termes de la suite (u_n) sont dans I.

De même, à partir d'un certain rang q', tous les termes de la suite (w_n) sont dans I.

Posons alors $N = \max(p, q, q')$.

Pour tout $n \ge N$, on a

$$a < u_n \le v_n \le w_n < b.$$

Donc, à partir de ce rang r, tous les termes de la suite (v_n) appartiennent I.

Par définition, la suite (v_n) converge vers ℓ . $\lim v_n = \ell$.

Exemple:

Étudier la convergence des suites : $u_n = \frac{\cos(n)}{n}$.

$$v_n = \frac{3 + 5 \times (-1)^n}{n^2}.$$

Remarque

Si (u_n) est une suite bornée, et si (v_n) est une suite qui converge vers 0, alors la suite $(u_n \times v_n)$ converge vers 0.

Théorème (comparaison)

Soient (u_n) et (v_n) deux suites vérifiant, à partir d'un certain rang, $u_n \leq v_n$.

- 1. Si $\lim u_n = +\infty$, alors $\lim v_n = +\infty$.
- 2. Si $\lim v_n = -\infty$, alors $\lim u_n = -\infty$

Démonstration (à connaître)

1. On suppose qu'il existe un rang n_1 tel que pour tout $n \ge n_1$, $u_n \le v_n$.

Soit A > 0.

Comme $\lim u_n = +\infty$, il existe un entier n_2 tel que pour tout $n \ge n_2$, $u_n \ge A$.

Posons $N = max(n_1; n_2)$.

Pour tout $n \ge N$, on a $A \le u_n \le v_n$, et donc $v_n \ge A$.

On a montré que pour tout A > 0, il existe $N \in \mathbb{N}$, tel que pour tout $n \ge N$, $v_n \ge A$.

Donc $\lim v_n = +\infty$.

2. Il suffit d'adapter la démonstration du 1.

Exemple : étudier la convergence des suites

$$u_n = 2n + 3\sin(n).$$

$$v_n = 2 \times (-1)^n - 4n.$$

Remarque

Ces théorèmes de comparaison sont particulièrement utiles lorsqu'on rencontre des cosinus, sinus ou des $(-1)^n$.

VISuite de terme général q^n (q réel)

Propriété (Inégalité de Bernoulli)

Pour tout x > 0, et pour tout $n \ge 0$, $(1+x)^n \ge 1 + nx$.

Démonstration

Soit x > 0.

On raisonne par récurrence sur n.

Initialisation

Pour n = 0, on a $(1+x)^0 = 1$ et $1+0 \times x = 1$.

Donc $(1+x)^0 \ge 1 + 0 \times x$.

L'inégalité est vraie pour n=0.

Hérédité

Soit $k \geqslant 0$

Supposons que $(1+x)^k \ge 1 + kx$. Montrons l'inégalité au rang (k+1).

$$(1+x)^{k+1} = (1+x)^k \times (1+x) \geqslant (1+kx)(1+x).$$

En effet, le sens de l'inégalité est conservé en multipliant par (1+x) > 0.

Or, $(1+kx)(1+x) = 1 + (k+1)x + kx^2 \ge 1 + (k+1)x$ (car $kx^2 \ge 0$).

On a donc $(1+x)^{k+1} \ge 1 + (k+1)x$.

La propriété est héréditaire.

Conclusion On a montré par récurrence que pour tout x > 0 et pour tout $n \in \mathbb{N}$, $(1+x)^n \ge 1 + nx$.

VI.1Étude de la suite (q^n)

Distinguous plusieurs cas:

- Si q = 0. Pour tout $n \ge 1$, $0^n = 0$, donc (0^n) tend vers 0.
- Si q=1. Pour tout $n \ge 1$, $1^n=1$, donc (1^n) tend vers 1.
- Si q > 1. D'après l'inégalité de Bernoulli, $q^n \ge 1 + n(q-1)$. Comme q-1>0, on a clairement $\lim 1+n(q-1)=+\infty$, et par comparaison, $\lim q^n = +\infty.$
- Si -1 < q < 1, (et $q \neq 0$), alors $\frac{1}{|q|} > 1$, donc $\lim \frac{1}{|q|^n} = +\infty$. D'après les résultats sur les opérations, il vient $\lim |q|^{\hat{n}} = 0$.

Ayant l'inégalité $-|q|^n \leqslant q^n \leqslant |q|^n$, on conclut via le théorème des gendarmes que $\lim q^n = 0.$

• Si $q \leq -1$, la suite (q^n) prend alternativement ses valeurs dans $[1; +\infty[$ et dans $]-\infty;-1]$. Elle diverge donc et n'a pas de limite.

Théorème

Si q > 1, alors $\lim q^n = +\infty$.

Si q=1, alors la suite (q^n) est constante égale 1 (et converge donc vers 1).

Si -1 < q < 1, alors $\lim q^n = 0$.

Si $q \leq -1$, alors la suite (q^n) est divergente et n'a pas de limite.

Démonstration (à connaître)

Il faut savoir redémontrer que lorsque q > 1, $\lim q^n = +\infty$. Cela inclut l'inégalité de Bernoulli (que l'on peut montrer par récurrence).

VI.2**Application**

Ce résultat permet de calculer la limite éventuelle de la somme des termes d'une suite géométrique.

Soit x un nombre réel tel que -1 < x < 1.

Considérons la somme $S_n = 1 + x + x^2 + \dots + x^n$. On sait que $S_n = \frac{1 - x^{n+1}}{1 - x}$.

Comme $\lim x^n = 0$ (car -1 < x < 1), on obtient $\lim S_n = \frac{1}{1 - x}$.

Propriété

Soit x un réel vérifiant -1 < x < 1. Alors,

$$\sum_{n=0}^{+\infty} x^n = 1 + x + x^2 + \dots + x^n + \dots = \frac{1}{1-x}.$$

Exemple:

$$\sum_{n=0}^{+\infty} \left(\frac{1}{2}\right)^n = 1 + \frac{1}{2} + \dots + \frac{1}{2^n} + \dots$$

$$= \frac{1}{1 - \frac{1}{2}}$$

$$= 2$$