NOM: 14/10/2025

Prénom:

1re G. Devoir de mathématiques n° 2

Exercice 1 (6 points)

Soit f la fonction définie sur \mathbb{R} par $f(x) = -x^2 + 4x - 3$. On appelle \mathcal{P} sa courbe représentative dans un repère.

- 1. Déterminer les coordonnées des points d'intersection de \mathcal{P} avec l'axe des abscisses.
- 2. Étudier le signe de f sur \mathbb{R} . Justifier.
- 3. Dresser le tableau de variation de f. Justifier.
- 4. Soit (d) la droite d'équation y = 2x 3. Étudier la position relative de la parabole \mathcal{P} et de la droite (d). Indication : étudier le signe de f(x) - (2x - 3).

Exercice 2 (4 points)

Les questions sont indépendantes. On détaillera les calculs.

- 1. Soit (a_n) la suite définie pour tout entier n par $a_n = \left(3 \frac{1}{2}n\right)^2$. Calculer a_0 , a_1 et a_2 .
- 2. Soit (b_n) la suite définie par $b_0 = 5$ et pout tout $n \ge 0$, $b_{n+1} = -\frac{2}{3}b_n + 1$. Calculer b_1 et b_2 .
- 3. Soit (c_n) la suite définie par $c_0 = 3$ et pour tout $n \in \mathbb{N}$, $c_{n+1} = c_n - n^2 + 3$. Calculer c_1 et c_2 .
- 4. Soit (d_n) la suite définie par $d_0 = 1$, $d_1 = 1$, et pour tout entier $n \in \mathbb{N}, d_{n+2} = 3d_{n+1} + d_n.$ Calculer d_2 et d_3 .

Exercice 3 (1,5 point)

Soit (u_n) la suite définie par $u_0 = 6$ et pour tout entier $n \in \mathbb{N}$, $u_{n+1} = \frac{5}{4}u_n + 13.$

1. Compléter la fonction Python d'argument n qui renvoie la valeur de u_n pour tout entier $n \ge 0$.

2. À l'aide de la calculatrice, donner u_{10} arrondi à l'unité. $u_{10} \approx \dots$

Exercice 4 (3,5 points)
1. La suite (A_n) est définie sur \mathbb{N} par $\begin{cases} A_0 = 4 \\ A_{n+1} = A_n + \frac{n^2}{n+3} \end{cases}$

Montrer que (A_n) est croissante. 2. Pour tout entier $n \in \mathbb{N}$, $B_n = \frac{7n-1}{n+2}$.

(a) Montrer que pour tout $n \in \mathbb{N}$, $B_{n+1} - B_n = \frac{15}{(n+2)(n+3)}$.

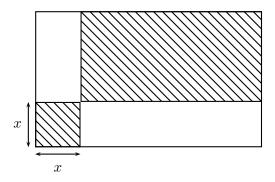
(b) Que peut-on en déduire sur les variations de la suite (B_n) ?

3. Pour tout entier $n \in \mathbb{N}$, $C_n = n + (-2)^n \times n^2$. Montrer que (C_n) n'est ni croissante ni décroissante.

Exercice 5 (5 points)

Une carte de vœux rectangulaire, de dimensions 6 cm et 10 cm, comporte un carré et un rectangle colorés représentés ici par des hachures. Pour des impressions en grandes quantités, on souhaite limiter la quantité d'encre pour la partie colorée.

On note x le côté du carré coloré.



1. Justifier que l'aire colorée est donnée sur [0;6] par

$$f(x) = 2x^2 - 16x + 60.$$

2. Déterminer pour quelles valeurs de x l'aire colorée ne dépasse pas la moitié de la surface totale.

On montrera que cela conduit à l'inéquation $x^2 - 8x + 15 \le 0$ sur [0; 6].

Exercice 6 (bonus, 1 point)

Déterminer tous les réels c tels que l'équation $x^2 + 10x + c = 0$ n'ait pas de solution réelle.

NOM: 16/10/2025

Prénom:

1re G. Devoir de mathématiques nº 2 bis

Exercice 7 (6 points)

Soit f la fonction définie sur \mathbb{R} par $f(x) = 2x^2 - 3x - 2$ et \mathscr{C} sa courbe représentative dans un repère.

- 1. Résoudre dans \mathbb{R} l'équation f(x) = 0. Justifier.
- 2. Dresser le tableau de signe de f. Justifier.
- 3. Déterminer le tableau de variation de f. Justifier.
- 4. Étudier la position relative de \mathscr{C} et de la droite (d) d'équation y = -5x + 2.

Indication : étudier le signe de f(x) - (-5x + 2).

Exercice 8 (4 points)

Les questions sont indépendantes. On détaillera les calculs.

- 1. Soit (a_n) la suite définie pour tout entier n par $a_n = \left(\frac{n}{1+2n}\right)^2$. Calculer a_0 , a_1 et a_2 .
- 2. Soit (b_n) la suite définie par $b_0 = 2$ et pout tout $n \ge 0$, $b_{n+1} = \frac{3}{2}b_n + \frac{1}{2}$. Calculer b_1 et b_2 .
- 3. Soit (c_n) la suite définie par $c_0 = 3$ et pour tout $n \in \mathbb{N}$, $c_{n+1} = c_n + 6n - 1$. Calculer c_1 et c_2 .
- 4. Soit (d_n) la suite définie par $d_0 = 2$, $d_1 = 5$, et pour tout entier $n \in \mathbb{N}$, $d_{n+2} = 3d_{n+1} + d_n$. Calculer d_2 et d_3 .

Exercice 9 (1,5 point)

Soit (u_n) la suite définie par $u_0 = 7$ et pour tout entier $n \in \mathbb{N}$, $u_{n+1} = \frac{5}{5}u_n + 3.$

1. Compléter la fonction Python d'argument n qui renvoie la valeur de u_n pour tout entier $n \ge 0$.

2. À l'aide de la calculatrice, donner u_{10} arrondi à l'unité. $u_{10} \approx \dots$

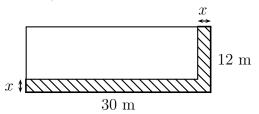
Exercice 10 (3,5 points)
1. La suite (A_n) est définie sur \mathbb{N} par $\begin{cases} A_0 = 4 \\ A_{n+1} = A_n - \frac{11}{n+3} \end{cases}$ Montrer que (A_n) est décroissante.

2. Pour tout entier $n \in \mathbb{N}$, $B_n = \frac{2n+5}{n+4}$.

- (a) Montrer que pour tout $n \in \mathbb{N}$, $B_{n+1} B_n =$ $\frac{10}{(n+4)(n+5)}.$
- (b) Que peut-on en déduire sur les variations de (B_n) ?
- 3. Pour tout entier $n \in \mathbb{N}$, $C_n = 3 \times (-2)^n$. Montrer que (C_n) n'est ni croissante ni décroissante.

Exercice 11 (5 points)

- 1. Résoudre dans \mathbb{R} l'inéquation $x^2 42x + 80 \ge 0$.
- 2. Un terrain rectangulaire a pour longueur 30 m et largeur 12 m. On souhaite aménager un chemin de largeur x (en mètres) le long de deux côtés consécutifs comme le montre la figure ci-contre (le chemin est la partie hachurée).



La largeur x du chemin doit être supérieure ou égale à 0,8 m. On souhaite que la partie restante du terrain ait une aire supérieure ou égale à 280 m².

- (a) Montrer que cela se traduit par $x^2 42x + 80 \ge 0$.
- (b) En déduire les valeurs possibles de la largeur x du chemin.

Exercice 12 (bonus, 1 point)

Déterminer tous les réels c tels que l'équation $x^2 + 10x + c = 0$ ait deux solutions réelles.