1G - groupes 8 et 9 - Spécialité mathématiques Correction du travail à distance $n^{\circ}3$

Exercice 1 (nº 6 partie cours)

Considérons la suite (u_n) définie pour tout entier $n \in \mathbb{N}$ par $u_n = n \times \sqrt{n}$.

1. Montrer que (u_n) est croissante.

Pour tout
$$n \in \mathbb{N}$$
, $u_{n+1} - u_n = (n+1)\sqrt{n+1} - n\sqrt{n} = n\sqrt{n+1} + \sqrt{n+1} - n\sqrt{n} = n(\sqrt{n+1} - \sqrt{n}) + \sqrt{n+1}$.

Comme la foncion racine carrées est stretement croissante sur $[0; +\infty[$, $\sqrt{n+1} > \sqrt{n}$, et donc $\sqrt{n+1} - \sqrt{n} > 0$.

En multipliant par $n \ge 0$, $n(\sqrt{n+1} - \sqrt{n}) \ge 0$.

De plus, pour tout $n \in \mathbb{N}$, $\sqrt{n+1} > 0$.

Donce, par somme deux nombres positifs, $u_{n+1} - u_n = n(\sqrt{n+1} - \sqrt{n}) + \sqrt{n+1} > 0$.

Pour tout $n \in \mathbb{N}$, $u_{n+1} > u_n$.

La suite (u_n) est strictement croissante.

2. On admet que $\lim u_n = +\infty$.

Écrire un algorithme qui renvoie le plus petit entier n_0 tel que pour tout $n \ge n_0$, $u_n \ge 10^4$.

$$\begin{array}{lll} n \leftarrow 0 & & & & & & \\ U \leftarrow n\sqrt{n} & & & & & \\ & Tant \ que \ U < 10^4 & & & \\ & n \leftarrow n+1 & & & \\ U \leftarrow n\sqrt{n} & & & \\ & Fin \ tant \ que & & \\ & Afficher \ n & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\$$

3. Programmer l'algorithme à la calculatrice ou Python et donner la valeur de n_0 .

Voici une fonction Python sans argument qui convient

On charge le module math pour la fonction racine carrée (sqrt).

Exercice 2 (66 page 88)

$$v_0 = 0$$
 et pour tout $n \in \mathbb{N}$, $v_{n+1} = \frac{v_n}{1 + v^2}$.

1. Fonction Python qui renvoie v_n .

```
def v(n):
    V=2
    for k in range(n):
        V=V/(1+V**2)
    return(V)
```

2. Conjecture sur la limite de (v_n) .

$$v_1 = 0, 4, v_{100} \approx 0,0696; v_{10000} \approx 0,00706.$$

Il semble que (v_n) converge vers 0 (ce n'est qu'une conjecture, on ne l'a pas montré).

```
Exercice 3 (67 page 88)
u_0 = 15 et pour tout n \in \mathbb{N}, u_{n+1} = 3u_n + 7.
Fonction Python à compléter qui renvoie le plus petit entier p tel que u_p > 1000.
def seuil67p88():
   A=15
   N=0
   while A<=1000:
      N=N+1
      A = 3 * A + 7
   return(N)
On obtient p=4.
Attention à l'inégalité dans le test du while, qui doit être la négation de l'énoncé, soit A \leq 1000.
Exercice 4 (73 page 88)
v_0 = 4, et pour tout n \in \mathbb{N}, v_{n+1} = v_n + \frac{1}{v_n}.
    1. Algorithme de la somme des termes v_0 + v_1 + \cdots + v_N
       Entrer N
       V \leftarrow 4
       S \leftarrow 4
       Pour i allant de 1 à N V \leftarrow V + \frac{1}{V}
       Fin Pour
       Afficher S
    2. Fonction Python
       def somme(N):
           V=4
           S=4
           for i in range(1,N+1):
              V=V+1/V
              S=S+V
          return(S)
       Par exemple, somme (10) renvoie v_0 + v_1 + \cdots + v_{10} \approx 55,90201.
Exercice 5 (59 page 87)
On donne u_0 = 5 et pour tout n \in \mathbb{N}, u_{n+1} = 7u_n^2 - 5.
Fonction Python (sans argument) qui retourne la somme u_0 + u_1 + \cdots + u_{100}.
def sommeU():
   U=5
   S=5
   for i in range(1,101):
      U=7*U**2-5
      S=S+U
   return(S)
Exercice 6 (97 page 91)
p_0 = 1013 (pression en hectopascals à l'altitude 0, niveau de la mer).
La pression diminue de 1,25% à chaque élévation de 100 m. On note p_n la pression à l'altitude (100 \times n)
m.
    1. Calcul de p_1 et p_2.
       Diminuer de 1,25\% revient à multiplier par 1-0,0125=0,9875.
       En effet, x - \frac{1,25}{100} \times x = x \times (1 - 0,0125) = x \times 0,9875.
       Donc p_1 = p_0 \times 0,9875 = 1013 \times 0,9875 = 1000,3375 \approx 1000.
       p_2 = p_1 \times 0,9875 = 987,5 \approx 988.
```

2. Relation p_{n+1} en fonction de p_n , et interprétation.

Comme diminuer de 1,25 % revient à multiplier par 0,9875,

on a pour tout $n \in \mathbb{N}$, $p_{n+1} = p_n \times 0,9875$.

Autre démonstration, reprenant le calcul effectué à la question 1 :

$$p_{n+1} = p_n - \frac{1,25}{100} \times p_n = p_n \times (1 - 0,0125) = p_n \times 0,9875.$$
Donc la suite (p_n) est la suite géométrique de premier terme $p_0 = 1013$, et de raison $q = 0,9875$.

3. Expression de p_n .

Comme (p_n) est la suite géométrique de premier terme $p_0 = 1013$ et de raison q = 0,9875, on

Pour tout $n \in \mathbb{N}$, $p_n = p_0 \times q^n = 1013 \times 0,9875^n$. Pour tout $n \in \mathbb{N}$, $p_n = 1013 \times 0,9875^n$.

4. Pression à 3200 m.

 $3200 = 32 \times 100$, on cherche donc p_{32} .

 $p_{32} = 1013 \times 0,9875^{32} \approx 677.$ La pression atmosphérique à 3200 m est de 677 hectopascals.

5. Déterminons à partir de quelle altitude (à 100m près), la pression devient inférieure à 600 hectopascals.

On cherche le plus petit entier n tel que $p_n \leq 600$.

Méthode 1 : Algorithme de seuil (avec une fonction Python).

def seuilpression():

N=0

P=1013

while P>600:

N=N+1

P=P*0.9875

return (N) On obtient N=42. Méthode 2 : deux termes et le sens de variation

Comme la suite p_n est géométrique de premier terme positif et de raison q = 0,9875 vérifiant 0 < q < 1, la suite (p_n) est strictement décroissante (propriété de cours).

Or, on observe que $p_{41} = 1013 \times 0,9875^{41} \approx 605 > 600$. Et $p_{42} = 1013 \times 0,9875^{42} \approx 597 \leqslant 600$.

Donc le plus petit entier n tel que $p_n \leq 600$ est 42.

La pression devient inférieure à 600 hectopascals à partir de 4200 m d'altitude.

Exercice 7 (Problème de la balle)

Lucas lâche une balle d'une hauteur de 24 m. Lorsque la balle rebondit, la hauteur de son rebond perd 10% par rapport à la hauteur du rebond précédent.

On pose $u_0 = 24$, et pour tout $n \ge 1$, on note u_n la hauteur du n^e rebond.

1. Calculer u_1 .

On peut considérer que
$$u_0 = 24$$
. $u_1 = 24 - 24 \times \frac{10}{100} = 24 \times 0.9 = 21.6$. Le premier rebond a une hauteur de 21.6 m.

2. Montrer que (u_n) est une suite géométrique dont on précisera la raison. Pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n - u_n \times \frac{10}{100} = u_n - 0.1 \times u_n = 0.9 \times u_n.$

Donc (u_n) est une suite géométrique de raison q = 0.9.

- 3. On estime que la balle est immobile lorsque le rebond est inférieur à 1 cm.
 - (a) Écrire une fonction Python sans argument qui renvoie le plus petit entier n tel que $u_n \leq 0,01$. def seuilballe():

N=0

U = 24

while U>0.01:

N=N+1

U=0.9*U return (N)

(b) Combien de rebonds a fait la balle? Justifier. On note p ce nombre.

On obtient N = 74.

La plus petite valeur de n pour laquelle $u_n \leq 0.01$ est 74.

La balle a donc fait 73 rebonds ayant des hauteurs supérieures à 1 cm.

On considère qu'elle a fait 73 rebonds puis s'est immobilisée : p=73.

4. Quelle est alors la distance parcourue par la balle?

Pour chaque rebond, la balle parcourt la longueur u_n une fois en montant, et une fois en descendant.

L'énoncé dit que « Lucas lâche une balle d'une hauteur de 24 m ».

Notons D la distance totale parcourue par la balle.

$$D = 24 + \sum_{n=1}^{p} 2u_n$$

$$= 24 + 2\sum_{n=1}^{p} u_n$$

$$= 24 + 2 \times (u_1 + u_2 + \dots + u_{73})$$

$$= 24 + 2 \times 21, 6 \times \frac{1 - 0.9^{73}}{1 - 0.9}$$

$$\approx 455, 802$$

La balle a parcouru environ 456 m.

Exercice 8 (sujet C p 99)

- 1. Comme OA_0A_1 est isocèle en A_1 , on a $OA_1 = A_0A_1$. En appliquant le théorème de Pythgore dans le triangle OA_0A_1 rectangle en A_1 , il vient
 - $OA_0^2 = OA_1^2 + A_1A_0^2$, soit $2OA_1^2 = 1^2$, puis $OA_1 = \sqrt{\frac{1}{2}} = \frac{\sqrt{2}}{2}$.
- 2. (a) Le triangle OA_nA_{n+1} est rectangle isocèle en A_{n+1} , d'après le théorème de Pythagore, $2OA_{n+1}^2 = OA_n^2$, ou encore $OA_{n+1} = \frac{\sqrt{2}}{2}OA_n$.
 - (b) En posant $u_n = OA_n$, avec la question précédente, on a pour tout $n \in \mathbb{N}$, $u_{n+1} = \frac{\sqrt{2}}{2}u_n$. Donc la suite (u_n) est la suite géoémtrique de premier terme $u_0 = OA_0 = 1$ et de raison $q = \frac{\sqrt{2}}{2}$.

Donc pour tout $n \in \mathbb{N}$, $u_n = u_0 \times q^n = \left(\frac{\sqrt{2}}{2}\right)^n$.

- 3. $L_n = OA_0 + A_0A_1 + A_1A_2 + dots + A_0A_1 + A_0A_$
 - (a) Expression de L_n .

Avec les triangles isocèles, il vient

$$L_n = OA_0 + OA_1 + OA_2 + \dots + OA_n$$

 $L_n = u_0 + u_1 + \dots + u_n$

Donc L_n et la somme des (n+1) premiers termes de la suite géométrique (u_n) .

$$L_n = u_0 \times \frac{1 - q^{n+1}}{1 - q} = 1 \times \frac{1 - \left(\frac{\sqrt{2}}{2}\right)^{n+1}}{1 - \frac{\sqrt{2}}{2}} = \frac{2}{2 - \sqrt{2}} \times \left[1 - \left(\frac{\sqrt{2}}{2}\right)^{n+1}\right].$$

Or, avec la quantité conjuguée, $\frac{2}{2-\sqrt{2}} = \frac{2(2+\sqrt{2})}{(2-\sqrt{2})(2+\sqrt{2})} = \frac{2(2+\sqrt{2})}{4-2} = 2+\sqrt{2}$.

$$L_n = (2 + \sqrt{2}) \times \left[1 - \left(\frac{\sqrt{2}}{2}\right)^{n+1}\right].$$

(b) Conjecture sur la limite d L_n .

Il semble que L_n tende vers $2 + \sqrt{2} \approx 3,4142$.

La démonstration utilise un résultat vu en terminale : si 0 < q < 1, alors $\lim q^n = 0$.

$$\frac{\sqrt{2}}{2} \approx 0, 7.$$

Comme
$$0 < \frac{\sqrt{2}}{2} < 1$$
, on a $\lim_{n \to \infty} \left(\frac{\sqrt{2}}{2}\right)^{n+1} = 0$.

Donc $\lim L_n = 2 + \sqrt{2} \approx 3,4142.$

Exercice 9 (119 page 100)

1. (a) Le nombre de termes double à chaque étape. On pose a_n le nombre d'éléments de la liste L_n .

On a $a_0 = 1$, et pour tout $n \in \mathbb{N}$, $a_{n+1} = 2a_n$, donc la suite est géoémtrique de raison 2 et $a_n = a_0 \times q^n = 1 \times 2^n = 2^n$.

On cherche le plus petit entier n tel que $2^n > 2020$.

D'après le cours, 2 > 1, la suite (2^n) est strictement croissante, $2^{10} = 1024$, et $2^{11} = 2048$.

Le plus petit entier n tel que L_n contient plus de 2020 éléments est n = 11.

On pouvait aussi utiliser un algorithme de seuil.

(b) Fonction qui renvoie le 2020e terme de L_n où n=11, soit L_{11} .

```
def list():
    L=[1]
    for k in range(11):
        U=[i*0.5 for i in L]
```

L=L+U return L[2019]

La fonction renvoie 0.00390625.

- 2. On pose u_n le dernier élément de la liste L_n .
 - (a) $u_0 = 1$, et pour tout $n \in \mathbb{N}$, $u_{n+1} = \frac{1}{2}u_n$, donc u_n est géométrique de raison $\frac{1}{2}$, et $u_n = \frac{1}{2^n}$. Comme 0 < q < 1, la suite (u_n) est strictement décroissante.
 - (b) On conjecture que $\lim u_n = 0$.