BTS – Dérivation

Un peu d'histoire

L'histoire du calcul infinitésimal remonte à l'Antiquité. Sa création est liée à une polémique entre deux mathématiciens : Isaac Newton et Gottfried Wilhelm Leibniz.

Néanmoins, on retrouve chez des mathématiciens plus anciens les prémices de ce type de calcul : Archimède, Pierre de Fermat et Isaac Barrow notamment.

C'est à Lagrange (fin du XVIII^e siècle) que l'on doit la notation f'(x), aujourd'hui usuelle, pour désigner le nombre dérivé de f en x. C'est aussi à lui qu'on doit le nom de « dérivée » pour désigner ce concept mathématique.

I Nombre dérivé et tangente

On considère une fonction f dfinie sur un intervalle I, a un nombre réel de I. Si la courbe de f admet au point d'abscisse a une tangente non parallèle à l'axe des ordonnées, on dit que f est dérivable en a.

Définition

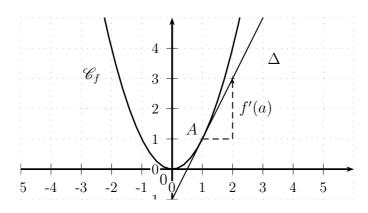
Le nombre dérivé de f en a, noté f'(a), est le coefficient directeur de la tangente au point d'abscisse a.

Définition (tangente)

Soit f une fonction dérivable en le réel a.

La tangente à la courbe de f en a est la droite qui passe par le point de coordonnées A(a; f(a)) et de coefficient directeur f'(a).

Exemple:



Sur cet exemple, on lit f'(1) = 2 car la tangente au point d'abscisse 1 a pour coefficient directeur 2.

Remarque (rappel sur le coefficient directeur d'une droite). Le coefficient directeur (ou la pente) de la droite (AB) est $m = \frac{y_B - y_A}{x_B - x_A}$.

Propriété (équation de tangente)

Soit f une fonction dérivable en un réel a.

Une équation de la tangente T_a à la courbe de f au point A(a; f(a)) d'abscisse a est :

$$y = f'(a)(x - a) + f(a).$$

Fonction dérivée II

Définition

On dit que f est dérivable sur un intervalle I si elle est dérivable en tout réel de I. Alors la fonction dérivée f' associe à tout réel x de I le nombre dérivé f'(x).

Théorème (Dérivées usuelles ♡)

The (Berryces usualies \$\forall \)		
Fonction f	Dérivée f'	Intervalle de validité
f(x) = c (fonction constante) $f(x) = x$	f'(x) = 0 $f'(x) = 1$	$I=\mathbb{R}$ $I=\mathbb{R}$
$f(x) = x^2$ $f(x) = x^n, \ n \geqslant 1$	$f'(x) = 2x$ $f'(x) = nx^{n-1}$	$I=\mathbb{R}$ $I=\mathbb{R}$
$f(x) = x^n, \ n \leqslant -1$ $f(x) = \frac{1}{x}$	$f'(x) = nx^{n-1}$ $f'(x) = -\frac{1}{x^2}$	$I =]-\infty; 0[\text{ ou }]0; +\infty[$ $I =]-\infty; 0[\text{ ou }]0; +\infty[$
$f(x) = \sqrt{x}$	$f'(x) = \frac{1}{2\sqrt{x}}$	$I =]0; +\infty[$
$f(x) = \cos(x)$ $f(x) = \sin(x)$	$f'(x) = -\sin(x)$ $f'(x) = \cos(x)$	$I=\mathbb{R}$ $I=\mathbb{R}$
$f(x) = e^x$ $f'(x) = \ln(x)$	$f'(x) = e^x$ $f'(x) = \frac{1}{x}$	$I = \mathbb{R}$ $I =]0; +\infty[$

Exemples:

Si pour tout $x \in \mathbb{R}$ $f(x) = x^5$, alors pour tout $x \in \mathbb{R}$, $f'(x) = 5x^4$. Si pour tout $x \neq 0$, $g(x) = \frac{1}{x^3} = x^{-3}$, alors pour tout $x \neq 0$ $g'(x) = -3x^{-4} = -\frac{3}{x^4}$.

Théorème (Opérations sur les fonctions dérivables)

Soient u et v des fonctions dérivables sur un intervalle I, soit $k \in \mathbb{R}$.

1. Somme de fonctions.

La fonction (u+v) est dérivable sur I et (u+v)'=u'+v'.

2. Produit par un nombre réel.

Soit $k \in \mathbb{R}$. La fonction $(k \times u)$ est dérivable sur I et $(k \times u)' = k \times u'$.

3. Produit de fonctions.

La fonction $(u \times v)$ est dérivable sur I et $(u \times v)' = u'v + uv'$.

4. Inverse et quotient.

Si v ne s'annule pas sur I (c'est-à-dire $\forall x \in I, v(x) \neq 0$), alors

— la fonction $\frac{1}{v}$ est dérivable sur I et

$$\left(\frac{1}{v}\right)' = -\frac{v'}{v^2}.$$

— la fonction $\frac{u}{v}$ est dérivable sur I et

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

Propriété (Composée)

Soient $u: I \to J$, et $g: J \to \mathbb{R}$ deux fonctions dérivables.

On pose $f(x) = (g \circ u)(x) = g(u(x))$.

Fonction	Dérivée
$f = (g \circ u)$	$(g' \circ u) \times u'$

Cas particuliers:

Fonction	Dérivée
e^u	$u' \times e^u$
ln(u), avec $u > 0$	$\frac{u'}{u}$
$u^n \ (n \geqslant 1)$	$nu^{n-1} \times u'$
\sqrt{u} , avec $u > 0$	$\frac{u'}{2\sqrt{u}}$

III Applications à l'étude des fonctions

Théorème (dérivée et sens de variation)

Soit f une fonction dérivable sur un intervalle I.

- 1. f est croissante sur I si et seulement si f' est positive sur I.
- 2. f est décroissante sur I si et seulement si f' est négative sur I.
- 3. f est constante sur I si et seulement si f' = 0 sur I.

Remarque

Le signe de la dérivée f' détermine les variations de la fonction f.

IV Exercices du cours

Exercice 1

Soit f une fonction telle f(2) = -3 et f'(2) = 0, 4.

Déterminer l'équation de la tangente à la courbe au point d'abscisse 2.

Exercice 2

Dériver les fonctions suivantes :

1.
$$f(x) = -2x - 5$$

2.
$$g(x) = \frac{4}{x}$$

3.
$$h(x) = x^2 + 7x^3 - 10x^4$$

4.
$$i(x) = (2x+3)\sqrt{x}$$

5.
$$j(x) = \frac{1}{3x^2}$$

6.
$$k(x) = \frac{3-x}{6x+1}$$

Exercice 3

À l'aide de la propriété, dériver les fonctions suivantes :

1. Soit f la fonction définie sur
$$\mathbb{R}$$
 par $f(x) = (7x+4)^3$.

2. Soit f la fonction définie sur]5;
$$+\infty$$
[par $f(x) = \sqrt{2x - 10}$.

3. Soit f la fonction définie sur
$$]-\infty; 3[$$
 par $f(x)=\sqrt{-4x+12}.$

4. Soit f la fonction définie sur
$$\mathbb{R}$$
 par $f(x) = e^{-3x+5}$.

5. Soit
$$f$$
 la fonction définie sur \mathbb{R} par $f(x) = \ln(4x^2 + 5)$.

Exercice 4

Soit f la fonction définie sur l'intervalle [-1; 10] par $f(x) = -x^3 + 6x^2 + 1$.

1. Déterminer la dérivée
$$f'(x)$$
 de f .

2. Étudier le signe de f' et en déduire le tableau de variation de f.

Exercice 5

Soit g la fonction définie sur [0; 3] par $g(x) = \frac{x-1}{2x+1}$.

1. Déterminer la dérivée
$$g'(x)$$
 de g .

2. Étudier le signe de g' et en déduire le tableau de variation de g sur [0;3].

4