Chapitre 17 : Lois de probabilité à densité

Lois de probabilité à densité

Jusqu'à présent, on a toujours rencontré des variables aléatoires qui ne peuvent prendre qu'un nombre fini de valeurs (variable discrète).

Par exemple, une variable aléatoire X suivant la loi binomiale $\mathcal{B}(n;p)$ prend ses valeurs dans $\{0; 1; \ldots; n\}$.

Vocabulaire:

On dit qu'une variable aléatoire est continue lorsqu'elle peut prendre toutes les valeurs d'un intervalle I de \mathbb{R} .

Exemple:

On choisit au hasard un nombre réel dans l'intervalle [0, 1].

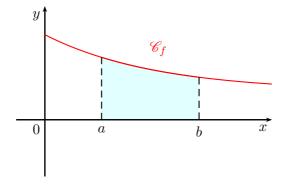
La variable aléatoire X correspondant au nombre obtenu est continue. Les valeurs possibles pour X sont tous les réels de [0;1].

Définition

- 1. On appelle fonction de densité de probabilité sur l'intervalle I toute fonction définie sur I, continue et positive sur I, et telle que l'intégrale de f sur I soit égale à 1.
- 2. Une variable aléatoire à densité X sur un intervalle I est définie par la donnée d'une fonction de densité de probabilité f définie sur I.

Alors, la probabilité pour que X appartienne à un intervalle [a;b] de I est égale à

l'aire sous la courbe de f sur [a;b], soit $\int_a^b f(t) dt$.



- Remarque 1. Avec $[a;b] \subset I$, $P(a \leqslant X \leqslant b) = \int_a^b f(t) dt$.
 - 2. $P(X \in I) = 1 \text{ car } \int_{I} f(t) dt = 1.$

Exercice 1

- 1. Soit $f(x) = \frac{1}{x}$. Vérifier que f est une fonction de densité de probabilité sur [1; e].
- 2. Soit $g(x) = \frac{1}{x^2}$. Déterminer k pour que g soit une fonction de densité sur l'intervalle $\left|\frac{1}{2};k\right|$.

Propriété

Pour tous réels a et b appartenant à I :

- 1. P(X = a) = 0.
- 2. $P(X \le a) = P(X < a)$ (on peut échanger inégalités larges et strictes).
- 3. $P(X > a) = 1 P(X \le a) = 1 P(X < a)$.
- 4. $P(a < X < b) = P(X < b) P(X \le a)$.

Définition (espérance)

Soit X une variable aléatoire continue de fonction de densité f sur l'intervalle [a;b].

L'espérance mathématique de X est le réel $E(X) = \int_a^b t f(t) dt$.

Remarque

On fera le lien avec l'espérance d'une variable aléatoire discrète :

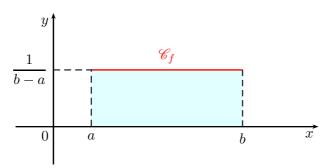
$$E(X) = \sum_{i=1}^{r} x_i P(X = x_i).$$

II Loi uniforme sur [a; b]

Définition

Soient a, b deux réels tels que a < b.

La loi uniforme sur [a;b] est la loi ayant pour densité de probabilité la fonction constante f définie sur [a;b] par $f(t) = \frac{1}{b-a}$.

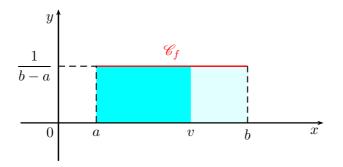


2

Propriété

Soit X une variable aléatoire suivant la loi uniforme sur [a;b].

Alors, pour tout $v \in [a; b]$, $P(a \le X \le v) = \frac{v - a}{b - a}$.



Démonstration

La densité de probabilité de X est définie sur [a;b] par $f(t) = \frac{1}{b-a}$.

Une primitive de f est donnée par $F(t) = \frac{t}{b-a}$.

$$P(a \le X \le v) = \int_a^v \frac{1}{b-a} dt = F(v) - F(a) = \frac{v-a}{b-a}.$$

Remarque

- 1. Pour tous réels u et v tels que $a \leqslant u \leqslant v \leqslant b$, $P(u \leqslant X \leqslant v) = \frac{v-u}{b-a}$.
- 2. Pour tout $u \in [a; b]$, $P(X \ge u) = \frac{b-u}{b-a}$.

Ces résultats se montrent de la même façon que la propriété précédente.

Propriété (espérance de la loi uniforme)

Soit X une variable aléatoire suivant la loi uniforme sur l'intervalle [a;b].

$$E(X) = \frac{a+b}{2}.$$

Démonstration

$$E(X) = \int_{a}^{b} \frac{t}{b-a} dt$$
$$= \frac{1}{b-a} \int_{a}^{b} t dt$$

Or, en posant g(t)=t, une primitive de g sur [a;b] est la fonction G définie par $G(t)=\frac{t^2}{2}$. Donc $E(X)=\frac{1}{b-a}\left(\frac{b^2}{2}-\frac{a^2}{2}\right)=\frac{b^2-a^2}{2(b-a)}=\frac{(b-a)(b+a)}{2(b-a)}=\frac{a+b}{2}$.

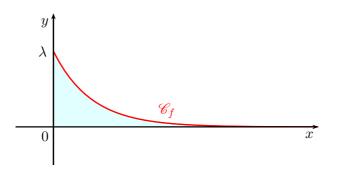
Donc
$$E(X) = \frac{1}{b-a} \left(\frac{b^2}{2} - \frac{a^2}{2} \right) = \frac{b^2 - a^2}{2(b-a)} = \frac{(b-a)(b+a)}{2(b-a)} = \frac{a+b}{2}$$

III Loi exponentielle

Définition

Soit λ un réel strictement positif ($\lambda > 0$).

Une variable aléatoire suit la loi exponentielle de paramètre λ si sa densité de probabilité est la fonction f définie sur $[0; +\infty[$ par $f(x) = \lambda e^{-\lambda x}$.



Remarque

- 1. $f(0) = \lambda$.
- 2. f est décroissante sur $[0; +\infty[$ (on le montre facilement en dérivant).
- 3. f est bien une fonction de densité sur $[0; +\infty[$:
 - Elle est clairement continue et positive sur $[0; +\infty[$.

— Vérifions que
$$\lim_{x\to +\infty} \int_0^x \lambda \mathrm{e}^{-\lambda t} \, \mathrm{d}t = 1$$
.
Une primitive de f sur $[0; +\infty[$ est la fonction définie par $F(t) = -\mathrm{e}^{\lambda t}$.
D'où $\int_0^x \lambda \mathrm{e}^{-\lambda t} \, \mathrm{d}t = \left[-\mathrm{e}^{-\lambda t}\right]_0^x = -\mathrm{e}^{-\lambda x} - 1$.

D'où
$$\int_0^x \lambda e^{-\lambda t} dt = \left[-e^{-\lambda t} \right]_0^x = -e^{-\lambda x} - 1$$

En passant à la limite quand x tend vers $+\infty$, on a $\lim_{x\to+\infty}\int_0^x \lambda e^{-\lambda t} dt = 1$, soit

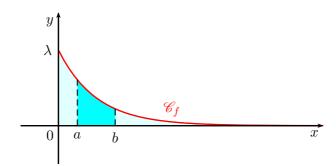
$$\int_0^{+\infty} \lambda e^{-\lambda t} dt = 1.$$

Propriété

Si T suit la loi exponentielle de paramètre λ , alors, pour tous réels a et b tels que $0 \le a \le b$,

$$P(a \leqslant T \leqslant b) = e^{-\lambda a} - e^{-\lambda b}$$

En particulier, $P(T \le b) = 1 - e^{-\lambda b}$ et $P(T > a) = e^{-\lambda a}$.



Démonstration

La fonction $F: x \mapsto -e^{-\lambda x}$ est une primitive de f sur $[0; +\infty[$.

$$P(a \leqslant T \leqslant b) = \int_{a}^{b} \lambda e^{-\lambda x} dx$$
$$= F(b) - F(a)$$
$$= -e^{-\lambda b} - (-e^{-\lambda a})$$
$$= e^{-\lambda a} - e^{-\lambda b}$$

En particulier, $P(T \le b) = P(0 \le T \le b) = 1 - e^{-\lambda b}$.

Par suite, $P(T > a) = 1 - P(T \leqslant a) = e^{-\lambda a}$.

Propriété

Si T suit une loi exponentielle, alors pour tous réels positifs t et h,

$$P_{T\geqslant t}(T\geqslant t+h)=P(T\geqslant h).$$

Remarque

Cela traduit le fait que la loi exponentielle est sans mémoire.

Démonstration

Notons A l'événement $T \ge t + h$ et B l'événement $T \ge t$. Il est clair que $A \subset B$, donc $A \cap B = A$.

$$P_B(A) = \frac{P(A \cap B)}{P(B)}$$

$$= \frac{P(A)}{P(B)}$$

$$= \frac{P(T \ge t + h)}{P(T \ge t)}$$

$$= \frac{e^{-\lambda(t+h)}}{e^{-\lambda t}}$$

$$= \frac{e^{-\lambda t} \times e^{-\lambda h}}{e^{-\lambda t}}$$

$$= e^{-\lambda h}$$

$$= P(T \ge h)$$

Théorème (définition)

L'espérance mathématique d'une variable aléatoire T suivant la loi exponentielle de paramètre $\lambda>0$ est $\frac{1}{\lambda}$.

$$E(T) = \lim_{Y \to +\infty} \int_0^Y x f(x) \, dx = \lim_{Y \to +\infty} \int_0^Y x \lambda e^{-\lambda x} \, dx = \frac{1}{\lambda}$$

Démonstration (à connaître)

Soit g la fonction définie sur $[0; +\infty[$ par $g(x) = xf(x) = \lambda x e^{-\lambda x}$. On cherche une primitive de g sous la forme $G(x) = (ax + b)e^{-\lambda x}$ avec a et b réels. Pour tout $x \ge 0$,

$$G'(x) = ae^{-\lambda x} + (ax+b) \times (-\lambda)e^{-\lambda x}$$
$$= (-\lambda ax + a - \lambda b)e^{-\lambda x}$$

La fonction G est une primitive de g sur $[0; +\infty[$ ssi G' = g, c'est-à-dire

$$\lambda x e^{-\lambda x} = (-\lambda ax + a - \lambda b)e^{-\lambda x}.$$

Il suffit de choisir a et b de sorte que $-\lambda a = \lambda$ et $a - \lambda b = 0$. Ainsi, a = -1 et $b = \frac{a}{\lambda} = \frac{-1}{\lambda}$.

D'où
$$G(x) = \left(-x - \frac{1}{\lambda}\right) e^{-\lambda x}$$
.
Alors, pour tout réel positif A ,

$$\int_0^A x f(x) dx = \int_0^A x \lambda e^{-\lambda x} dx$$

$$= G(A) - G(0)$$

$$= \left(-A - \frac{1}{\lambda}\right) e^{-\lambda A} + \frac{1}{\lambda}$$

$$= \frac{1}{\lambda} (-\lambda A e^{-\lambda A} - e^{-\lambda A} + 1)$$

Or,
$$\lim_{A \to +\infty} -\lambda A = -\infty$$
, et $\lim_{X \to -\infty} X e^X = 0$. Par composée, $\lim_{A \to +\infty} -\lambda A e^{-\lambda A} = 0$. Comme $\lim_{A \to +\infty} -\lambda A = -\infty$, et $\lim_{X \to -\infty} e^X = 0$, il vient par composée $\lim_{A \to +\infty} e^{-\lambda A} = 0$. Par somme, $\lim_{A \to +\infty} (-\lambda A e^{-\lambda A} - e^{-\lambda A} + 1) = 1$.

Finalement,
$$\lim_{A \to +\infty} \int_0^A x \lambda e^{-\lambda x} dx = \frac{1}{\lambda}$$
.
Ainsi, $E(T) = \int_0^{+\infty} x \lambda e^{-\lambda x} dx = \frac{1}{\lambda}$.