Exercice 1 (102 page 91)

On donne $u_0 = 0$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = \frac{u_n}{2} + 1$.

1. Calcul de termes

Calculated termins
$$u_1 = \frac{u_0}{2} + 1 = 0 + 1 = 1$$
 $u_2 = \frac{u_1}{2} + 1 = \frac{1}{2} + 1 = \frac{3}{2}$ $u_3 = \frac{u_2}{2} + 1 = \frac{3}{4} + 1 = \frac{7}{4}$. Avec un tableur, $u_{100} \approx 2$.

- 2. Conjecture : on peut penser que (u_n) converge vers 2, soit $\lim u_n = 2$.
- 3. (u_n) est-elle arithmétique? Géométrique?

 (u_n) est arithmétique ssi $u_{n+1} - u_n$ est constant.

$$u_2 - u_1 = \frac{3}{2} - 1 = \frac{1}{2}$$
, et

$$u_1 - u_0 = 1 - 0 = 1.$$

Donc $u_2 - u_1 \neq u_1 - u_0$.

Comme $u_{n+1} - u_n$ n'est pas constant, la suite n'est pas arithmétique.

De plus, $u_0 = 0$ et $u_1 = 1 \neq 0$. Il n'y a aucun réel q vérifiant $u_1 = q \times u_0$, donc la suite n'est pas géométrique.

Remarque : pour étudier si une suite est géométrique, on peut étudier si le rapport $\frac{u_{n+1}}{u_n}$ est constant, mais ici $u_0 = 0$ et on évite d'écrire une division par 0.

- 4. Soit (v_n) la suite définie par $v_n = u_n 2$.
 - (a) Exprimons v_{n+1} en fonction de v_n . Puis déterminons la nature de (v_n) . Pour tout entier $n \in \mathbb{N}$,

$$v_{n+1} = u_{n+1} - 2$$

$$= \frac{1}{2}u_n + 1 - 2$$

$$= \frac{1}{2}u_n - 1$$

$$= \frac{1}{2}(u_n - 2)$$

$$= \frac{1}{2}v_n$$

Ou bien, pour finir le calcul, comme $v_n = u_n - 2$, on a $u_n = v_n + 2$, et on remplace u_n par $v_n + 2$.

La suite (v_n) est donc la suite géométrique de raison $\frac{1}{2}$ et de premier terme $v_0 = u_0 - 2 = 0 - 2 = -2$.

(b) Exprimons v_n en fonction de n.

Pour tout $n \in \mathbb{N}$, $v_n = v_0 \times q^n = -2 \times \left(\frac{1}{2}\right)^n$.

(c) Exprimons u_n en fonction de n.

Comme $v_n = u_n - 2$, il vient $u_n = v_n + 2$. Ainsi, pour tout $n \in \mathbb{N}$, $u_n = -2 \times \left(\frac{1}{2}\right)^n + 2$.

(d) Au tableur, on devine que $\lim v_n = 0$, ce qui est cohérent avec la conjecture de la question 1 sur $\lim u_n = 2$.

Exercice 2 (104 page 92)

Capital de départ : 5000 euros.

Formule A : le capital au bout de n années, noté C_n , augmente de 250 euros chaque année.

1

Formule B : le capital au bout de n années, noté K_n , augmente de 4% chaque année.

1. Calcul des trois premiers termes.

$$C_0 = 5000$$
, $C_1 = C_0 + 250 = 5000 + 250 = 5250$, $C_2 = C_1 + 250 = 5250 + 250 = 5500$. $K_0 = 5000$.

$$K_1 = K_0 + K_0 \times \frac{4}{100} = K_0 \times (1 + 0.04) = 5000 \times 1.04 = 5200.$$

 $K_2 = K_1 + K_1 \times 0.04 = 1.04 \times K_1 = 5200 \times 1.04 = 5408.$

2. Relation de récurrence, puis nature des suites.

Pour tout entier n, $C_{n+1} = C_n + 250$.

 (C_n) est la suite arithmétique de premier terme $C_0 = 5000$ et raison r = 250.

Pour tout entier $n, K_{n+1} = K_n + 0,04K_n = 1,04 \times K_n$.

 (K_n) est la suite géométrique de premier terme $K_0 = 5000$ et raison q = 1,04.

3. Expression du capital au bout de n années.

Pour tout $n \in \mathbb{N}$, $C_n = C_0 + nr = 5000 + 250n$.

Pour tout $n \in \mathbb{N}$, $K_n = K_0 \times q^n = 5000 \times 1,04^n$.

4. Capital au bout de 6 ans.

$$C_6 = 5000 + 6 \times 250 = 6500.$$

$$K_6 = 5000 \times 1,04^6 \approx 6327.$$

5. Au bout de combien d'années le capital a-t-il doublé? Cela dépend-il du capital initial? Formule A.

$$C_n \geqslant 2 \times C_0 \text{ ssi } 5000 + 250n \geqslant 10000 \text{ ssi } n \geqslant \frac{5000}{250} \text{ ssi } n \geqslant 20.$$

Avec la formule A, le capital de départ est doublé au bout de 20 ans.

Cette durée dépend de C_0 : avec $C_0 = 50$, $C_1 = 50 + 250 = 300$, le capital serait doublé dès la première année.

Formule B.

$$K_n \ge 2 \times K_0 \text{ ssi } 5000 \times 1,04^n \ge 2 \times 5000 \text{ ssi } 1,04^n \ge 2.$$

Avec la calculatrice, on observe que $1,04^n$ dépasse 2 pour la première fois lorsque n=18. $1,04^{17}\approx 1,95,$ et $1,04^{18}\approx 2,03.$

Avec la formule B, le capital de départ est doublé au bout de 18 ans.

Cette durée ne dépend pas du capital initial puisque cela revient à chercher le plus petit entier n tel que $1,04^n \ge 2$.

Exercice 3 (sujet A page 99)

- 1. L'iode 131 perd 8,3% de sa masse chaque jour. Sa masse initiale en grammes est $M_0 = 100$ et on note M_n sa masse au bout de n jours.
- 2. Au bout de 2 jours :

$$M_1 = 100 \times (1 - 0.083) = 100 \times 0.917 = 91.7.$$

 $M_2 = 91.7 \times 0.917 \approx 84.1.$

Réponse b.

3. La suite (M_n) est géométrique de raison 0, 917.

En effet,
$$M_{n+1} = M_n - M_n \times 0{,}083 = M_n \times (1 - 0{,}083) = M_n \times 0{,}917.$$
 Réponse b.

4. Expression de M_n en fonction de n.

Pour tout
$$n \in \mathbb{N}$$
, $M_n = M_0 \times q^n = 100 \times 0,917^n$.

Réponse d.

5. Pour retourner la liste des masses jusqu'au ne jour,

def suiteA(n) :

M=100 L=[100]

for i in range(1,n+1):

M=M*0.917

L.append(M)

return(L) Réponse c.

6. La masse est inférieure à 10 grammes après 27 jours.

$$M_{26} = 100 \times 0,917^{26} \approx 10,5.$$

$$M_{27} = 100 \times 0,917^{27} \approx 9,6.$$
 Réponse d.