BTS – La fonction exponentielle

I Définition et propriétés

Théorème (et définition : existence et unicité)

Il existe une unique fonction f dérivable sur \mathbb{R} telle que f' = f et f(0) = 1. Cette fonction est appelée la fonction exponentielle, et on la note exp.

Remarque

La foncion exp est donc dérivable sr $\mathbb R$ et l'on retiendra :

- 1. Pour tout $x \in \mathbb{R}$, $\exp'(x) = \exp(x)$.
- $2. \exp(0) = 1$

Exercice 1

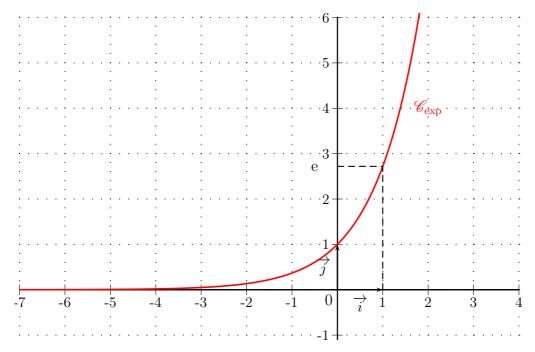
Soit f la fonction définie sur \mathbb{R} par $f(x) = x^2 \exp(x)$. Calculer f'(x).

Définition (nombre e)

L'image de 1 par la fonction exponentielle se note e, c'est-à-dire $\exp(1) = e$. $e \approx 2,718$.

Il est appelé nombre d'Euler.

Courbe représentative



Propriété

La fonction exponentielle est strictement positive : pour tout $x \in \mathbb{R}$, $\exp(x) > 0$.

Propriété

La fonction exponentielle est strictement croissante sur \mathbb{R} .

Exercice 2

Étudier le signe des expressions suivantes.

- 1. $A(x) = 5 + \exp(3x)$.
- 2. $B(x) = (2 x) \exp(1 + x)$.

Propriété

Pour tous réels a et b,

- 1. $\exp(a+b) = \exp(a) \times \exp(b)$
- $2. \exp(-a) = \frac{1}{\exp(a)}$
- 3. $\exp(a-b) = \frac{\exp(a)}{\exp(b)}$
- 4. pour tout entier $n \in \mathbb{Z}$, $\exp(na) = (\exp(a))^n$

Exercice 3

Transformer les expressions

- 1. $A(x) = \exp(x+3)$
- 2. $B(x) = \exp(1 5x)$
- 3. $C(x) = \exp(3x)$

II Notation e^x

Propriété (et notation e^x)

Pour tout entier n, $\exp(n) = \exp(1 \times n) = [\exp(1)]^n = e^n$.

Par extension, on pose pour tout x réel $\exp(x) = e^x$.

Avec la nouvelle notation, les propriétés déjà vues s'écrivent

Propriété

1. La fonction $x\mapsto \mathrm{e}^x$ est dérivable sur \mathbb{R} , et sa dérivée est elle-même.

2

- 2. $e^0 = 1$.
- 3. Pour tout $x \in \mathbb{R}$, $e^x > 0$.
- 4. Pour tous réels a et b, et pour tout entier relatif n :
 - (a) $e^{a+b} = e^a \times e^b$.
 - (b) $e^{-a} = \frac{1}{e^a}$.
 - (c) $e^{a-b} = \frac{e^a}{e^b}$.
 - (d) $(e^a)^n = e^{na}$.

Exercice 4

Écrire sous la forme d'une seule exponentielle.

- $1. \ A(x) = e^{-2x} \times e^7$
- 2. $B(x) = \frac{e^{x+1}}{e^{2x-5}}$

3.
$$C(x) = 2e^{3x}$$

$$4. \ D(x) = \frac{1}{e}$$

Théorème (équation et inéquation)

Pour tous réels a et b,

1.
$$e^a = e^b$$
 équivaut à $a = b$.

2.
$$e^a < e^b$$
 équivaut à $a < b$.

Exercice 5

Résoudre dans $\mathbb R$ les équations et inéquations suivantes :

1.
$$e^{2x+1} = e^{3x-3}$$
.

2.
$$e^{3x-5} < \frac{1}{e}$$
.

3.
$$e^{3x+1} \ge 1$$
.

Théorème (Dérivée de e^u)

Si u est dérivable sur I, alors e^u est dérivable sur I et

$$(e^u)' = u'e^u.$$

Exercice 6

Soit f la fonction définie sur \mathbb{R} par $f(x) = 5e^{-2x+3}$.

1. Calculer
$$f'(x)$$
.

2. Étudier le signe de
$$f'$$
 et en déduire les variations de f .