Chapitre 7 : Suites géométriques

I Rappels sur les suites géométriques

Définition

Une suite géométrique est une suite où chaque terme s'obtient en multipliant le précédent par un même nombre q > 0 appelé la raison.

Pour tout entier $n \in \mathbb{N}$,

$$u_{n+1} = u_n \times q$$

Exemple: 1; 2; 4; 8; 16; 32 sont les premiers termes de la suite géométrique de raison 2 et de premier terme 1 (ce sont les puissances successives de 2).

Exercice 1

Les dépenses annuelles U_n d'un hôpital augmentent de 4 % chaque année.

- 1. Exprimer U_{n+1} en fonction de U_n .
- 2. En déduire la nature de la suite (U_n) et sa raison.

Remarque

Le coefficient multiplicateur de l'évolution de taux t est c = 1 + t.

Lorsqu'une grandeur subit des évolutions successives de même taux t, ses valeurs sont les termes d'une suite géométrique de raison q = 1 + t.

Théorème (Terme général d'une suite géométrique)

Soit (u_n) une suite géométrique de raison q.

- 1. Si le premier terme est u_0 , alors pour tout $n \in \mathbb{N}$, $u_n = u_0 \times q^n$.
- 2. Si le premier terme de la suite est u_1 , alors pour tout $n \ge 1$, $u_n = u_1 \times q^{n-1}$.

Remarque

À partir d'un terme u_p quelconque : pour tous entiers n et p,

$$u_n = u_p \times q^{n-p}$$

Exercice 2

Soit (u_n) la suite géométrique de premier terme $u_0 = 3$ et de raison q = 2. Calculer u_5 .

II Sens de variation des suites géométriques

Propriété

Soit (u_n) une suite géométrique de premier terme strictement positif et de raison q > 0.

- 1. Dans le cas où q > 1, on a pour tout n, $u_{n+1} > u_n$: la suite (u_n) est strictement croissante.
- 2. Dans le cas où 0 < q < 1, on a pour tout $n, u_{n+1} < u_n$: la suite (u_n) est strictement décroissante.
- 3. Dans le cas où q = 1, on a pour tout n, $u_{n+1} = u_n$: la suite est constante.

Remarque

Lorsque $q \neq 1$, la suite est représentée graphiquement par des points situés sur une courbe dite exponentielle; cette courbe n'est pas une droite.

Lorsque q = 1, la suite (u_n) constante est représentée par des points situés sur une droite parallèle à l'axe des abscisses.

III Somme des termes consécutifs d'une suite géométrique

Théorème (Somme des premiers termes d'une suite géométrique)

Soit (u_n) une suite géométrique de raison $q \neq 1$.

1. Si le premier terme est u_0 , alors pour tout $n \ge 0$,

$$u_0 + u_1 + u_2 + \dots + u_{n-1} + u_n = u_0 \times \frac{1 - q^{n+1}}{1 - q}.$$

2. Si le premier terme est u_1 , alors pour tout $n \ge 1$,

$$u_1 + u_2 + \dots + u_{n-1} + u_n = u_1 \times \frac{1 - q^n}{1 - q}.$$

3. De façon générale, soit S une somme de termes consécutifs d'une suite géométrique. On a :

$$S = (\text{premier terme}) \times \frac{1 - (\text{raison})^{(\text{nombre de termes})}}{1 - \text{raison}}$$

Remarque

Atention à l'utilisation de la calculatrice lorsqu'on applique cette formule : le trait de fraction joue le rôle de parenthèses!