La suite de Syracuse

Exercice 1

On considère les suites (u_n) définies de la façon suivante :

Le premier terme u_0 est un nombre entier positif donné. Pour tout $n \ge 0$,

— si u_n est pair alors $u_{n+1} = \frac{u_n}{2}$ — si u_n est impair alors $u_{n+1} = 3u_n + 1$

Première partie

- 1. Calculer les 9 premiers termes de la suite si $u_0 = 5$.
- 2. Soit (u_n) une des suites définies précédemment. Supposons qu'il existe un entier n_0 tel que $u_{n_0} = 1$. Que peut-on dire des termes de la suite à partir de n_0 ?
- 3. Compléter la fonction syracuse d'arguments u et n qui renvoie la liste des n+1 premiers termes de la suite pour une valeur de u_0 saisie dans la variable u.

```
def syracuse(u,n):
```

```
L=[u]
for i in range(1,n+1):
    if u%2==...:
        u=...
    else :
        u=...
    L=...
return(L)
```

4. Finit-on par obtenir 1 si le premier terme de la suite est $u_0 = 3$? $u_0 = 7$? $u_0 = 11$? $u_0 = 13$? $u_0 = 19$?

Deuxième partie

1. Temps de vol

On conjecture que quel que soit l'entier positif u_0 , u_n atteint la valeur 1.

Cette conjecture n'est à ce jour pas démontrée, et on n'a pas trouvé de contreexemple.

On appelle temps de vol de la valeur k, le plus petit entier n tel que $u_n = 1$, obtenu en prenant $u_0 = k$.

- (a) Déterminer le temps de vol de la suite du 1 $(u_0 = 5)$.
- (b) Compléter la fonction Python qui renvoie le temps de vol pour une valeur de u_0 saisie en argument.

```
def tempsdevol(u):
    i=0
    while u...:
    if u%2==0:
        u=u/2
    else :
        u=3*u+1
    i=...
    return(...)
```

(c) Donner les temps de vol des suites du 4.

2. Altitude

On appelle altitude de la valeur k, la plus grande valeur de u_n obtenue en prenant $u_0 = k$.

- (a) Donner l'altitude de la suite du 1. $(u_0 = 5)$
- (b) Écrire en Python une fonction altitude qui renvoie l'altitude lorsqu'on entre la valeur de u_0 en argument.
- (c) Donner à l'aide de cette fonction les altitudes des suites du 4.