Corrigé du devoir maison nº 8

Exercice 1

Partie A

Soit g la fonction définie sur \mathbb{R} par $g(x) = e^x + x + 1$.

- 1. g est dérivable sur \mathbb{R} et, pour tout réel x, $g'(x) = e^x + 1$. Or, pour tout réel x, $e^x > 0$, donc g'(x) > 0, donc g est strictement croissante sur \mathbb{R} .

 - $\lim_{x \to +\infty} e^x = +\infty$ et $\lim_{x \to +\infty} (x+1) = +\infty$ donc $\lim_{x \to +\infty} g(x) = +\infty$ $\lim_{x \to -\infty} e^x = 0$ et $\lim_{x \to -\infty} (x+1) = -\infty$ donc $\lim_{x \to -\infty} g(x) = -\infty$
- 2. Corollaire du théorème des valeurs intermédiaires sur \mathbb{R} . g est continue, puisque dérivable, et strictement croissante sur \mathbb{R} . De plus, $\lim_{x \to -\infty} g(x) = -\infty$ et $\lim_{x \to +\infty} g(x) = +\infty$. Donc 0 appartient à $\lim_{x \to -\infty} g(x)$; $\lim_{x \to -\infty} g(x)$ [,

donc, l'équation g(x) = 0 admet une unique solution, α , sur \mathbb{R} .

• On a $g(-1,28) \approx -0.002$, $g(-1,27) \approx 0.011$ et $g(\alpha) = 0$, donc $g(-1, 28) < g(\alpha) < g(-1, 27)$.

Or g est strictement croissante sur \mathbb{R} , donc $-1, 28 < \alpha < -1, 27$.

3. g est strictement croissante sur \mathbb{R} et $g(\alpha) = 0$, on en déduit le signe de g(x) sur \mathbb{R} :

x	$-\infty$		α		$+\infty$
signe de $g(x)$		_	0	+	

Partie B

Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{xe^x}{e^x + 1}$.

Notons $\mathscr C$ sa courbe représentative dans un repère orthogonal.

1. On sait que $\lim_{x \to -\infty} e^x = 0$, donc $\lim_{x \to -\infty} e^x + 1 = 1$.

Par ailleurs, on sait que $\lim_{x \to -\infty} x e^x = 0$, donc $\lim_{x \to -\infty} \frac{x e^x}{e^x + 1} = \frac{0}{1} = 0$. Donc $\lim_{x \to -\infty} f(x) = 0$. Donc la droite d'équation y = 0 est asymptote à la courbe \mathscr{C} .

- 2. Pour tout réel $x : f(x) = \frac{xe^x}{e^x + 1} = \frac{xe^x \times e^{-x}}{(e^x + 1)e^{-x}} = \frac{xe^0}{e^0 + e^{-x}} = \frac{x}{1 + e^{-x}}$
 - On a $\lim_{x \to +\infty} e^{-x} = 0$, donc $\lim_{x \to +\infty} (1 + e^{-x}) = 1$, donc $\lim_{x \to +\infty} \frac{x}{1 + e^{-x}} = +\infty$, donc $\lim_{x \to +\infty} f(x) = +\infty$
- 3. f est dérivable sur \mathbb{R} comme quotient de fonctions dérivables, et on a :

$$f'(x) = \frac{(e^x + xe^x)(e^x + 1) - xe^x \times e^x}{(e^x + 1)^2} = \frac{e^x(1+x)(e^x + 1) - xe^x \times e^x}{(e^x + 1)^2}.$$

$$f'(x) = \frac{e^x[(1+x)(e^x + 1) - xe^x]}{(e^x + 1)^2} = \frac{e^x(e^x + 1 + xe^x + x - xe^x)}{(e^x + 1)^2}.$$

$$\text{Donc } f'(x) = \frac{e^x(e^x + 1 + x)}{(e^x + 1)^2} = \frac{e^xg(x)}{(e^x + 1)^2}.$$

• Pour tout réel x, $e^x > 0$ et $(e^x + 1)^2 > 0$, donc f'(x) a le même signe que g(x).

΄.	> 0 ec (e 1)	, 0,	10110	$f(\omega)$	10 111	
	x	$-\infty$		α		$+\infty$
	signe de $f'(x)$		_		+	
		0				$+\infty$
	variations de f		\searrow		7	
				$f(\alpha)$		

4. (a) Déterminer une équation de la tangente T à $\mathscr C$ au point d'abscisse 0.

On a
$$f(0) = 0$$
 et $f'(0) = \frac{1(1+1+0)}{(1+1)^2} = \frac{1}{2}$.

Donc T a pour équation $y = \frac{1}{2}(x-0) + 0$, c'est à dire $y = \frac{1}{2}x$.

(b) Pour tout réel x, on a :

$$f(x) - \frac{1}{2}x = \frac{xe^x}{e^x + 1} - \frac{1}{2}x = \frac{2xe^x - (e^x + 1)x}{2(e^x + 1)} = \frac{xe^x - x}{2(e^x + 1)} = \frac{x(e^x - 1)}{2(e^x + 1)}.$$
Signa do $e^x - 1$:

La fonction exponentielle est strictement croissante sur \mathbb{R} et $e^0 = 1$, donc : pour tout x de $]-\infty;0[$, $e^x<1$, donc $e^x-1<0$ et pour tout x de $]0; +\infty[$, $e^x > 1$, donc $e^x - 1 > 0$.

x	$-\infty$		0		$+\infty$
x		_	0	+	
$e^{x} - 1$		_	0	+	
$2(e^x + 1)$		+		+	
$f(x) - \frac{1}{2}$		+	0	+	

Pour tout x de $\mathbb{R} - \{0\}$, $f(x) - \frac{1}{2}x > 0$, donc $f(x) > \frac{1}{2}x$, donc \mathscr{C} est au dessus de T. \mathscr{C} et T sont sécantes en O(0,0)

Exercice 2 (nº 133 p 119)

Soit f définie sur [0, 5; 8] par $f(x) = 20(x - 1)e^{-0.5x}$.

1. Étudier le sens de variation de f.

La fonction f est dérivable sur I = [0, 5; 8] par composée et produit de fonctions dérivables. Pour tout $x \in I$,

$$f'(x) = 20 \times [1e^{-0.5x} + (x-1) \times (-0.5)e^{-0.5x}]$$

= 20 \times [1 - 0.5(x - 1)]e^{-0.5x}
= (-10x + 30)e^{-0.5x}

Comme une exponentielle est toujours strictement positive, $e^{-0.5x} > 0$.

Donc f'(x) a le même signe que (-10x + 30).

-10x + 30 s'annule pour x = 3.

x	0, 5		3		8
f'(x)		+	0	_	
f(x)	f(0,5)		f(3)		f(8)

Avec la calculatrice, $f(0,5) \approx -7.8$, $f(3) \approx 8.9$, $f(8) \approx 2.6$.

- 2. Dans cette question, f(x) désigne le bénéfice (en milliers d'euros), pour une production de x centaines de bicyclettes (la production variant de 50 à 800 bicyclettes).
 - (a) Combien, au minimum, l'entreprise doit-elle produire de bicyclettes pour ne pas travailler à perte?

L'entreprise fait des bénéfices lorsque $f(x) \ge 0$.

Or, $e^{-0.5x} > 0$. Donc $f(x) \ge 0$ si et seulement si $20(x-1) \ge 0$, soit $x \ge 1$. L'entreprise fait des bénéfices si elle produit au moins 100 bicyclettes.

(b) Comment réaliser un bénéfice maximal?

D'après la question 1, le maximum de f est atteint pour x=3.

L'entreprise fait un bénéfice maximal si elle produit 300 bicyclettes.

 $f(3) \approx 8,925.$

Le bénéfice maximal est de 8925 euros environ.