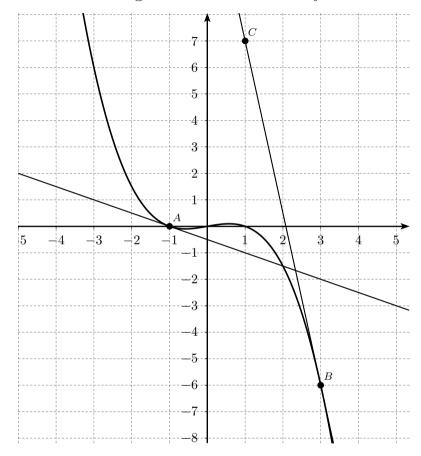
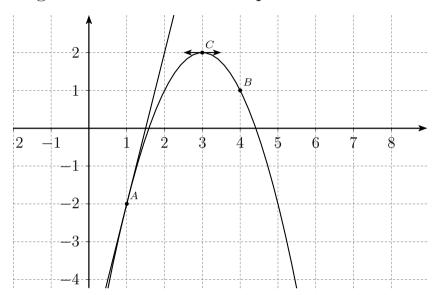

Exercices sur les nombres dérivés et les tangentes

Exercice 1


On donne ci-dessous la courbe d'une fonction f et on a tracé deux tangentes à la courbe de f.

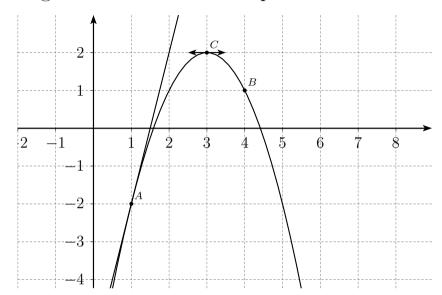
- 1. Lire f'(-2)
- 2. De même, on lit $f'(\ldots) = \ldots$
- 3. Sachant que f'(-1) = 0, tracer la tangente à la courbe correspondante sur le graphique.

Exercice 2


On donne ci-dessous la courbe d'une fonction f et on a tracé deux tangentes à la courbe de f.

- 1. Lire graphiquement deux nombres dérivés de f.
- 2. Sachant que $f'(0) = \frac{1}{4}$, tracer la tangente à la courbe de f au point d'abscisse 0.
- 3. On admet que $f(x) = \frac{1}{4}(x x^3)$. Retrouver les trois nombres dérivés par le calcul.

Exercice 1 (partie cours)


On a tracé la courbe $\mathscr C$ d'une fonction f et la tangente à la courbe $\mathscr C$ au point A.

- 1. Déterminer f'(1). Justifier.
- 2. La tangente au point C est parallèle à l'axe des abscisses. En déduire un nombre dérivé de f.
- 3. On admet que f'(4) = -2. Tracer la tangente à la courbe de f au point d'abscisse 4. Expliquer la construction.

Exercice 1 (partie cours)

On a tracé la courbe $\mathscr C$ d'une fonction f et la tangente à la courbe $\mathscr C$ au point A.

- 1. Déterminer f'(1). Justifier.
- 2. La tangente au point C est parallèle à l'axe des abscisses. En déduire un nombre dérivé de f.
- 3. On admet que f'(4) = -2. Tracer la tangente à la courbe de f au point d'abscisse 4. Expliquer la construction.