Chapitre 14 : Complément sur la dérivation

I Activité d'introduction

Exercice 1

1. Compléter le tableau de rappels sur la dérivation.

Expression de $f(x)$	a (constante)	x	x^2	$x^n \ (n \geqslant 1)$	$\frac{1}{x} \ (x \neq 0)$	$\sqrt{x} \ (x > 0)$
Expression de $f'(x)$						

Expression de $f(x)$	e^x	ln(x)	$\sin(x)$	$\cos(x)$
Expression de $f'(x)$				

2. Des cas particuliers de dérivée dune composée de fonction

u désigne une fonction dérivable sur un intervalle I, alors que a,b sont des réels.

Expression de $f(x)$	e^u	$\ln(u) \ (u > 0)$	$\sin(ax+b)$	$\cos(ax+b)$
Expression de $f'(x)$				

3. Applications. Dériver les fonctions.

(a) $f(x) = e^{0.01x+9}$

(b) $f(x) = \ln(3x+1)$

(c) $f(x) = \sin\left(\frac{1}{2\pi}x + \pi\right)$

(d) $f(x) = \cos(5x - 3)$

II Composition de fonctions

Définition

Soit u une fonction définie sur un intervalle I de \mathbb{R} , et prenant ses valeurs dans une partie J de \mathbb{R} . Soit g une fonction définie sur J.

1

La composée de u suivie de g est la fonction f définie sur I par f(x) = g(u(x)).

On la note $g \circ u$.

Exercice 2

Déterminer l'expression de la fonction.

1. $f = g \circ u \text{ avec } g(x) = x^2 \text{ et } u(x) = 2x + 3.$

2. $h = q \circ u \text{ avec } q(x) = 2x + 3 \text{ et } u(x) = x^2$

3. $k = g \circ u$ avec g(x) = 2x + 3 et $u(x) = \sin x$

Dérivée d'une composée de deux fonctions III

Exercice 3

On reprend les fonctions de l'exercice précédent. Dériver les fonctions f, h et k.

Théorème

Soient $u: I \to J$ et $g: J \to \mathbb{R}$ des fonctions dérivables.

Alors la fonction $f: x \mapsto g(u(x))$ (qui est bien définie) est dérivable sur I et

pour tout
$$x \in I$$
, $f'(x) = g'(u(x)) \times u'(x)$.

Cela s'écrit aussi $(g \circ u)' = (g' \circ u) \times u'$

Exercice 4 (démonstration)

Exercice 4 (démonstration)
On rappelle que le taux d'accroissement d'une fonction f entre x_0 et x est $\frac{f(x) - f(x_0)}{x - x_0}$.

- 1. Soit $x_0 \in I$. Écrire le taux d'accroissement de u entre x_0 et x.
- 2. Vérifier que le taux d'accroissement de $g \circ u$ entre x_0 et x s'écrit

$$\frac{g(u(x)) - g(u(x_0))}{u(x) - u(x_0)} \times \frac{u(x) - u(x_0)}{x - x_0}.$$

3. Passer à la limite lorsque $x \to x_0$ et conclure.

Propriété (cas particuliers)

Soit u une fonction dérivable sur un intervalle I.

Fonction g	Fonction $f = g \circ u$	Dérivée de f , soit $f' = (g \circ u)'$
e^x	e^u	$u'\mathrm{e}^u$
$\ln(x)$	$ \ln(u) \ (u > 0 \ \text{sur I}) $	$\frac{u'}{u}$
$\sin(x)$	$\sin(u)$	$u' \times \cos(u)$
$\cos(x)$	$\cos(u)$	$-u' \times \sin(u)$
x^n	u^n (n entier relatif)	$nu^{n-1} \times u'$
	$(u \neq 0 \text{ pour } n \text{ négatif})$	
$\frac{1}{x}$	$\frac{1}{u} \ (u \neq 0)$	$-\frac{u'}{u^2}$

2

Exercice 5

Dériver les fonctions suivantes sur \mathbb{R} .

1.
$$A(x) = e^{-9x+5}$$

2.
$$B(x) = \ln(3x^2 - 11)$$

3.
$$C(x) = \sin(1 - x^2)$$

4.
$$D(x) = (5x+4)^3$$