Exercices sur les suites arithmétiques et géométriques

Exercice 1 (des calculs de sommes)

Calculer les sommes suivantes (en justifiant le résultat) :

- 1. $S = u_0 + u_1 + u_2 + \cdots + u_{60}$, où (u_n) est la suite arithmétique de raison r = -5 et de premier terme $u_0 = 1$.
- 2. $T = 1 + 3 + 3^2 + 3^3 + 3^4 + \dots + 3^{15}$.
- 3. $A = \sum_{k=0}^{100} (3k+7)$.
- 4. $B = \sum_{j=1}^{49} \frac{1}{j} \frac{1}{j+1}$.

Exercice 2 (une suite arithmético-géométrique)

Soit (u_n) la suite définie par $u_0 = 1$ et pour tout entier $n \ge 0$, $u_{n+1} = 2u_n + 5$.

- 1. Calculer u_1 , u_2 et u_3 .
- 2. Soit (V_n) la suite définie par :

pour tout
$$n \in \mathbb{N}$$
, $V_n = u_n + 5$.

- (a) Montrer que (V_n) est une suite géométrique.
- (b) Exprimer V_n en fonction de n.
- 3. Exprimer u_n en fonction de n.
- 4. Exprimer en fonction de n:
- (a) $S = V_0 + V_1 + V_2 + \dots + V_n$.
- (b) $S' = u_0 + u_1 + u_2 + \dots + u_n$.

Exercice 3

La suite (u_n) est définie par $u_0 = 4$ et pour tout entier n $u_{n+1} = u_n - 2n + 5$.

- 1. En considérant les premiers termes, montrer que la suite (u_n) n'est pas arithmétique.
- 2. Soit (V_n) la suite définie sur \mathbb{N} par $V_n = u_{n+1} u_n$. Montrer que (V_n) est arithmétique, et préciser ses éléments caractéristiques.
- 3. Exprimer V_n en fonction de n.
- 4. On pose $S_n = V_0 + V_1 + \cdots + V_n$. Exprimer S_n en fonction de n.
- 5. Démontrer que $S_n = u_{n+1} u_0$.
- 6. En déduire l'expression de u_n en fonction de n.

Exercice 4

Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=1$ et pour tout entier $n, u_{n+1}=\frac{u_n}{2u_n+1}$.

Soit (v_n) la suite définie par $v_n = \frac{1}{u_n}$ (on admet que $u_n \neq 0$ pour tout n).

- 1. Montrer que (v_n) est une suite arithmétique, donner sa raison et son premier terme.
- 2. Exprimer v_n en fonction de n.
- 3. En déduire l'expression de u_n en fonction de n.

Exercice 5

Une entreprise emprunte 2 000 000 \in à une banque, à rembourser par mensualités sur 10 ans.

Partie A

Dans la première formule proposée par la banque, l'entreprise rembourse 8000 \in lors de la première mensualité, puis chaque mensualité suivante augmente de 300 \in . On appelle u_1 la première mensualité et u_{120} la dernière.

- 1. Exprimer u_{n+1} en fonction de u_n . Reconnaître la nature de la suite (u_n) et préciser ses caractéristiques.
- 2. Exprimer u_n en fonction de n.
- 3. Calculer la somme totale remboursée en 10 ans par l'entreprise.

Partie B

La banque propose une deuxième formule à l'entreprise : on appelle v_1 le premier versement, à déterminer. Chaque mensualité augmente de 1 % par rapport à la précédente, jusqu'à v_{120} .

- 1. Exprimer v_{n+1} en fonction de v_n . Reconnaître la nature de la suite (v_n) et préciser ses caractéristiques.
- 2. Exprimer v_n en fonction de n et de v_1 .
- 3. Exprimer le versement total en 10 ans en fonction de v_1 (On donnera une valeur exacte).
- 4. Que doit valoir v_1 pour que le versement total soit de 3 000 000 \in seulement? on arrondira au centime près.

Exercice 6

- 1. Soit la fonction Python suivante :
 - def A(n):

```
L=[1-4*i for i in range(n+1)]
return(L)
```

- (a) Écrire A(6) en extension.
- (b) La fonction A renvoie la liste des (n+1) premiers termes d'une suite. Préciser la nature et les éléments caractéristiques de cette suite.
- 2. Écrire une fonction Python B d'argument n qui renvoie la liste des (n+1) premiers termes de la suite géométrique définie par $u_0 = 5$ et de raison 3. Donner la liste en extension lorsqu'on entre n = 7.