NOM : Prénom :

21/03/2025

BTS. Contrôle nº 9

Exercice 1 (3 points)

Compléter sur l'énoncé.

On considère l'équation homogène ay'' + by' + cy = 0 et son équation caractéristique $ar^2 + br + c = 0$. On pose $\Delta = b^2 - 4ac$.

- 1. Si $\Delta = 0$, alors l'équation caractéristique admet une racine double $r_0 = -\frac{b}{2a}$. Les solutions de (E_0) sont les fonctions de la forme $y(t) = \dots$
- 2. Si $\Delta > 0$, alors l'équation caractéristique admet deux racines réelles $r_1 = \frac{-b \sqrt{\Delta}}{2a}$ et $r_2 = \frac{-b + \sqrt{\Delta}}{2a}$.

 Les solutions de (E_0) sont alors les fonctions $y(t) = \dots$
- 3. Si $\Delta < 0$, l'équation caractéristique admet deux racines conjuguées $\alpha + \mathrm{i}\beta$ et $\alpha \mathrm{i}\beta$ avec $\alpha = -\frac{b}{2a}$ et $\beta = \frac{\sqrt{-\Delta}}{2a}$. Les solutions de (E_0) sont les fonctions de la

forme $y(t) = \dots$

Exercice 2 (6 points)

Résoudre les équations homogènes suivantes.

1.
$$y'' - 2y' + y = 0$$

$$2. y'' + 2y' + 2y = 0$$

Exercice 3 (3 points)

Soit g la fonction définie sur \mathbb{R} par $g(t) = \sin(2t)$.

- 1. Calculer g'(t), puis g''(t).
- 2. En déduire une équation différentielle du second ordre dont g est solution.

Exercice 4 (4 points)

1. Résoudre l'équation différentielle (E):

$$y'' + 2y' + 17y = 0.$$

2. Déterminer la solution particulière f qui vérifie f(0) = 1 et f'(0) = -1.

Exercice 5 (4 points)

1. Résoudre l'équation différentielle (E):

$$x'' - 9x = 0$$

où x est une fonction de la variable réelle t définie et deux fois dérivable sur \mathbb{R} .

2. Déterminer la solution x de (E) vérifiant x(0) = 0 et x'(0) = 4.