Devoir de mathématiques nº 2

Éléments de correction du Sujet 3

Exercice 1 (1 point)

Donner la définition de deux événements A et B indépendants.

A et B sont indépendants si $P(A) = P_B(A)$.

Lorsque P(B) = 0, on considère que A et B sont indépendants.

Exercice 2 (7 points)

Soit f la fonction définie sur \mathbb{R} par $f(x) = -x^2 + 4x - 3$.

On appelle \mathcal{P} sa courbe représentative dans un repère orthonormé $(O; \overrightarrow{i}; \overrightarrow{j})$.

1. Déterminer les coordonnées des points d'intersection de $\mathcal P$ avec l'axe des abscisses.

$$\Delta = b^2 - 4ac = 16 - 12 = 4 > 0.$$

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-4 - 2}{-2} = 3.$$

$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-4 + 2}{-2} = 1.$$

La parabole coupe l'axe des abscisses en les points A(1;0) et B(3;0).

2. Étudier le signe de f sur $\mathbb R.$ Justifier.

Le trinôme prend le signe de a à l'extérieur des racines. Ici a=-1<0.

x	$-\infty$		1		3		$+\infty$
f(x)		_	0	+	0	-	

3. Dresser le tableau de variation de f. Justifier.

$$\alpha = \frac{-b}{2a} = \frac{-4}{-2} = 2.$$

$$\beta = \frac{-\Delta}{4a} = \frac{-4}{-4} = 1.$$

Le sommet de la parabole a pour coordonnées S(2;1).

Comme a=-1<0, la parabole est tournée vers le bas.

x	$-\infty$	2	2	$+\infty$
f(x)		1		`

4. Soit (d) la droite d'équation y = 2x - 3.

Étudier la position relative de la parabole \mathcal{P} et de la droite (d).

On étudie le signe de f(x) - (2x - 3).

$$f(x) - (2x - 3) = -x^2 + 4x - 3 - 2x + 3 = -x^2 + 2x = x(-x + 2).$$

 $x(-x + 2) = 0$ ssi $x = 0$ ou $x = 2$.

Le trinôme f(x) - (2x - 3) est du signe de a (négatif) à l'extérieur des racines.

	x	$-\infty$		0		2		$+\infty$
f	f(x) - (2x - 3)		_	0	+	0	_	

Donc \mathcal{P} est en-dessous de (d) sur $]\infty; 0[\cup]2; +\infty[$.

Et \mathcal{P} est au-dessus de (d) sur]0;2[.

5. Pour tout a réel, on note D_a la droite d'équation y = ax.

Déterminer les valeurs de a pour lesquelles D_a et \mathcal{P} n'ont pas de point d'intersection.

 D_a et \mathcal{P} n'ont pas de point d'intersection ssi l'équation f(x) = ax n'a pas de solution.

$$f(x) = ax \operatorname{ssi} -x^2 + 4x - 3 = ax$$
, soit $-x^2 + (4 - a)x - 3 = 0$.

$$\Delta = b^2 - 4ac'' = (4-a)^2 - 12 = a^2 - 8a + 16 - 12 = a^2 - 8a + 4.$$

L'équation n'a pas de solution ssi $\Delta = a^2 - 8a + 4 < 0$.

On étudie ce trinôme de la variable a.

Son discriminant est $\Delta_2 = (-8)^2 - 4 \times 4 = 64 - 16 = 48$.

$$a_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{8 - \sqrt{48}}{2} = 4 - 2\sqrt{3} \approx 0,54.$$

$$a_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{8 + \sqrt{48}}{2} = 4 + 2\sqrt{3} \approx 7,46.$$

Le trinôme est positif (signe de "a") à l'extérieur des racines.

a	$-\infty$		$4-2\sqrt{3}$		$4 + 2\sqrt{3}$		$+\infty$
$\Delta = a^2 - 8a + 4$		+	0	_	0	+	

Donc $\Delta < 0$ ssi $a \in]4 - 2\sqrt{3}; 4 + 2\sqrt{3}[$

 D_a et \mathcal{P} n'ont pas de point d'intersection lorsque $a \in]4-2\sqrt{3}; 4+2\sqrt{3}[$.

Exercice 3 (2 points)

Déterminer l'expression de la fonction f du second degré dont la parabole a pour sommet le point S(2; -5) et passe par le point A(6; -9).

D'après la forme canonique, comme le sommet est le point S(2; -5), il existe un réel a tel que $f(x) = a(x-2)^2 - 5$.

De plus, comme la courbe passe par le point A(6; -9), f(6) = -9.

Ainsi,
$$a \times (6-2)^2 - 5 = -9$$
, soit $16a - 5 = -9$, $16a = -4$, et $a = -\frac{1}{4}$.

Ainsi, pour tout
$$x \in \mathbb{R}$$
, $f(x) = -\frac{1}{4}(x-2)^2 - 5$.

Exercice 4 (2 points)

Résoudre dans \mathbb{R} l'équation suivante : $x^4 + 7x^2 - 8 = 0$.

On pose $U = x^2$, l'équation s'écrit $U^2 + 7U - 8 = 0$.

$$\Delta = 81 > 0$$
, $U_1 = -8$, et $U_2 = 1$.

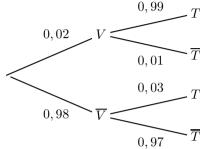
On étudie les équations $x^2 = -8$ et $x^2 = 1$.

L'équation $x^2=-8$ n'a pas de solution réelle car un carré est toujours positif. $x^2=1$ ssi x=-1 ou x=1.

Les solutions sont -1 et 1.

Exercice 5 (5 points)

1. (a) Traduire la situation à l'aide d'un arbre de probabilités.



(b) En déduire la probabilité de l'évènement $V \cap T$.

$$P(V \cap T) = P(V) \times P_V(T) = 0,02 \times 0,99 = 0,0198.$$

2. Déterminer P(T). Justifier.

V et \overline{V} forment une partition de $\Omega.$ D'après la formule des probabilités totales,

$$P(T) = P(V \cap T) + P(\overline{V} \cap T) = 0,0198 + 0,98 \times 0,03 = 0,0492.$$

3. (a) Justifier par un calcul la phrase : « Si le test est positif, il n'y a qu'environ $40\,\%$ de « chances » que la personne soit contaminée ».

$$P_T(V) = \frac{P(V \cap T)}{P(T)} = \frac{0.0198}{0.0492} \approx 0.4024.$$

En effet, si la personne a un test positif, il y a environ 40% de "chances" qu'elle soit contaminée par le virus.

(b) Déterminer la probabilité qu'une personne ne soit pas contaminée par le virus sachant que son test est négatif.

$$P(\overline{T}) = 1 - P(T) = 1 - 0,0492 = 0,9508.$$

Donc
$$P_{\overline{T}}(\overline{V}) = \frac{P(\overline{V} \cap \overline{T})}{P(\overline{T})} = \frac{0.98 \times 0.97}{0.9508} \approx 0.9998.$$

Sachant que son test est négatif, la probabilité qu'une personne ne soit pas contaminée est d'environ 0,9998.

Exercice 6 (3 points)

On étudie un nouveau logiciel qui est censé filtrer les messages indésirables (ou spams) sur une messagerie électronique.

Les concepteurs l'ont testé pour $1\,000$ messages reçus et ont observé que :

• 70% des messages reçus sont des spams

- 95% des spams sont éliminés
- 2% des messages bienvenus sont éliminés
- 1. Compléter le tableau d'effectifs suivant :

	Spams	Messages bienvenus	Total
Messages éliminés	665	6	671
Messages conservés	35	294	329
Total	700	300	1 000

- 2. On choisit un message au hasard. Tous les messages ont la même probabilité d'être choisis. On considère les événements suivants :
 - . S : « le message est un spam »
 - . E : « le message est éliminé »

On notera respectivement \overline{S} et \overline{E} leurs contraires.

(a) Donner sans justification P(S) et P(E), $P(S \cap E)$, et $P_S(\overline{E})$.

$$P(S) = \frac{700}{1000} = 0.7; \ P(E) = 0.671; \ P(S \cap E) = 0.665; \ \text{et}$$

$$P_S(\overline{E}) = \frac{35}{700} = 0.05.$$

(b) S et E sont-ils indépendants? Justifier.

S et E sont indépendants ssi $P(E) = P_S(E)$.

Or, P(E) = 0,671, et $P_S(E) = 0,95$ (d'après l'énoncé : 95% des spams sont éliminés).

Sinon,
$$P_S(E) = 1 - P_S(\overline{E}) = 1 - 0.05 = 0.95$$
.

Donc
$$P(E) \neq P_S(E)$$
. S et E ne sont pas indépendants.

Exercice 7 (bonus, 1 point)

Soient A et B des événements tels que $P(A) \neq 0$, $P(B) \neq 0$, $P(A) \neq 1$, et $P(B) \neq 1$.

Montrer que si A et B sont indépendants, alors \overline{A} et B sont aussi indépendants

On suppose que A et B sont indépendants, soit $P_B(A) = P(A)$.

On veut montrer que \overline{A} et B sont indépendants, soit $P_B(\overline{A}) = P(\overline{A})$.

On a toujours $P_B(A) + P_B(\overline{A}) = 1$.

$$P_B(\overline{A}) = 1 - P_B(A)$$
$$= 1 - P(A)$$
$$= P(\overline{A})$$

En effet, comme A et B sont indépendants, $P_B(A) = P(A)$.

Donc
$$P_B(\overline{A}) = P(\overline{A})$$
.

Les événements \overline{A} et B sont indépendants.

Devoir de mathématiques nº 2

Éléments de correction du sujet 4

Exercice 8 (1 point)

Énoncer la formule des probabilités totales associée à une partition $A_1,\ A_2,\ \dots,\ A_n$ de l'univers.

Pour tout événement B,

$$P(B) = P(A_1 \cap B) + P(A_2 \cap B) + \dots + P(A_n \cap B)$$

$$P(B) = P(A_1) \times P_{A_1}(B) + P(A_2) \times P_{A_2}(B) + \dots + P(A_n) \times P_{A_n}(B).$$

Exercice 9 (7 points)

Soit f la fonction définie sur \mathbb{R} par $f(x) = x^2 - 4x + 3$.

On appelle $\mathcal P$ sa courbe représentative dans un repère.

1. Déterminer les coordonnées des points d'intersection de $\mathcal P$ avec l'axe des abscisses.

On calcule les racines : 1 et 3.

La parabole coupe l'axe des abscisses en les points A(1;0) et B(3;0).

2. Étudier le signe de f sur \mathbb{R} . Justifier. Le trinôme prend le signe de a à l'extérieur des racines. Ici a=1>0.

x	$-\infty$		1		3		$+\infty$
f(x)		+	0	_	0	+	

3. Dresser le tableau de variation de f. Justifier.

$$\alpha = \frac{-b}{2a} = \frac{4}{2} = 2.$$

$$\beta = \frac{-\Delta}{4a} = \frac{-4}{4} = -1.$$

Le sommet de la parabole a pour coordonnées S(2;-1).

Comme a = 1 > 0, la parabole est tournée vers le haut.

x	$-\infty$	2	2	$+\infty$
f(x)		_	1	

4. Soit (d) la droite d'équation y = -2x + 3.

Étudier la position relative de la parabole \mathcal{P} et de la droite (d).

On étudiele signe de f(x) - (-2x + 3).

 $f(x) - (-2x + 3) = x^2 - 4x + 3 + 2x - 3 = x^2 - 2x = x(x - 2)$, qui s'annule en 0 et en 2.

x	$-\infty$		0		2		$+\infty$
f(x) - (-2x + 3)		+	0	_	0	+	

Donc \mathcal{P} est au-dessus de (d) sur $]\infty;0[\cup]2;+\infty[$.

Et \mathcal{P} est en-dessous de (d) sur]0;2[.

5. Pour tout a réel, on note D_a la droite d'équation y = ax.

Déterminer les valeurs de a pour lesquelles D_a et \mathcal{P} n'ont pas de point d'intersection.

$$f(x) = ax \operatorname{ssi} x^2 + (-4 - a)x + 3 = 0.$$

$$\Delta = (a+4)^2 - 12 = a^2 + 8a + 4.$$

 D_a et \mathcal{P} n'ont pas de point d'intersection ssi $\Delta = a^2 + 8a + 4 < 0$.

$$\Delta_2 = 64 - 16 = 48.$$

$$a_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-8 - \sqrt{48}}{2} = -4 - 2\sqrt{3} \approx -7,46.$$

$$a_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-8 + \sqrt{48}}{2} = -4 + 2\sqrt{3} \approx -0,53.$$

Le trinôme est positif (signe de "a") à l'extérieur des racines.

a	$-\infty$		$-4-2\sqrt{3}$		$-4 + 2\sqrt{3}$		$+\infty$
$\Delta = a^2 - 8a + 4$		+	0	_	0	+	

Donc
$$\Delta < 0$$
 ssi $a \in]-4-2\sqrt{3};-4+2\sqrt{3}[.$

 D_a et \mathcal{P} n'ont pas de point d'intersection lorsque $a \in]-4-2\sqrt{3};-4+2\sqrt{3}[$.

Exercice 10 (2 points)

Déterminer l'expression de la fonction f du second degré dont la parabole a pour sommet le point S(-3; -1) et passe par le point A(1; 7).

D'après la forme canonique, comme le sommet est le point S(-3; -1), il existe un réel a tel que $f(x) = a(x+3)^2 - 1$.

De plus, comme la courbe passe par le point A(1;7), f(1) = 7.

Ainsi,
$$a \times (1+3)^2 - 1 = 7$$
, soit $16a - 1 = 7$, $16a = 8$, et $a = \frac{1}{2}$.

Ainsi, pour tout
$$x \in \mathbb{R}$$
, $f(x) = \frac{1}{2}(x+3)^2 - 1$.

Exercice 11 (2 points)

Résoudre dans \mathbb{R} l'équation suivante : $2x^4 + 5x^2 - 3 = 0$.

On pose $U=x^2$, l'équation s'écrit $2U^2+5U-3=0$.

$$\Delta = 49 > 0, U_1 = -3, \text{ et } U_2 = \frac{1}{2}.$$

On étudie les équations $x^2 = -3$ et $x^2 = \frac{1}{2}$.

L'équation $x^2 = -3$ n'a pas de solution réelle car un carré est toujours positif.

$$x^2 = \frac{1}{2} \operatorname{ssi} x = -\frac{1}{\sqrt{2}} = -\frac{\sqrt{2}}{2} \operatorname{ou} x = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}.$$

Les solutions sont
$$-\frac{\sqrt{2}}{2}$$
 et $\frac{\sqrt{2}}{2}$.

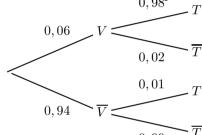
Exercice 12 (5 points)

Les résultats seront donnés sous forme décimale en arrondissant à 10^{-4} . Dans un pays, il y a 6 % de la population contaminée par un virus. On dispose d'un test de dépistage de ce virus qui a les propriétés suivantes :

- La probabilité qu'une personne contaminée ait un test positif est de 0,98 (sensibilité du test).
- La probabilité qu'une personne non contaminée ait un test négatif est de 0,99 (spécificité du test).

On fait passer un test à une personne choisie au hasard dans cette population. On note V l'évènement « la personne est contaminée par le virus » et T l'évènement « le test est positif ». \overline{V} et \overline{T} désignent respectivement les évènements contraires de V et T.

1. (a) Traduire la situation à l'aide d'un arbre de probabilités.



- (b) En déduire la probabilité de l'évènement $V \cap T$. $P(V \cap T) = P(V) \times P_V(T) = 0,06 \times 0,98 = 0,0588.$
- 2. Déterminer la probabilité que le test soit positif. $P(T) = P(V \cap T) + P(\overline{V} \cap T) = 0,0588 + 0,94 \times 0,01 = 0,0682.$
- 3. (a) L'affirmation suivante est-elle vraie ou fausse? Justifier. « Si le test est positif, il n'y a qu'environ $40\,\%$ de « chances » que la personne soit contaminée ».

 $P_T(V) = \frac{P(V \cap T)}{P(T)} = \frac{0.0588}{0.0682} \approx 0.86$. L'affirmation est fausse.

(b) Déterminer la probabilité qu'une personne ne soit pas contaminée par le virus sachant que son test est négatif.

$$P_{\overline{T}}(\overline{V}) = \frac{P(\overline{V} \cap \overline{T})}{P(\overline{T})} = \frac{0.94 \times 0.99}{1 - 0.0682} \approx 0.9987.$$

Exercice 13 (3 points)

On étudie un nouveau logiciel qui est censé filtrer les messages indésirables (ou spams) sur une messagerie électronique.

Les concepteurs l'ont testé pour 1 000 messages reçus et ont observé que :

- . 75% des messages reçus sont des spams
- 96% des spams sont éliminés
- 4% des messages bienvenus sont éliminés
- 1. Compléter le tableau d'effectifs suivant (aucune justification n'est attendue) :

	Spams	Messages bienvenus	Total
Messages éliminés	720	10	730
Messages conservés	30	240	270
Total	750	250	1 000

- 2. On choisit un message au hasard. Tous les messages ont la même probabilité d'être choisis. On considère les événements suivants :
 - . S : « le message est un spam »
 - . E : « le message est éliminé »

On notera respectivement \overline{S} et \overline{E} leurs contraires.

(a) Donner sans justification P(S) et P(E), $P(S \cap E)$, et $P_S(\overline{E})$.

$$P(S) = \frac{750}{1000} = 0.75; \ P(E) = 0.73; \ P(S \cap E) = 0.72; \text{ et}$$

$$P_S(\overline{E}) = \frac{30}{750} = 0.04.$$

(b) S et E sont-ils indépendants? Justifier.

S et E sont indépendants ssi $P(E) = P_S(E)$.

Or, P(E)=0,73, et $P_S(E)=0,96$ (d'après l'énoncé : 96% des spams sont éliminés).

Donc $P(E) \neq P_S(E)$. S et E ne sont pas indépendants.

Exercice 14 (bonus, 1 point)

Soient A et B des événements tels que $P(A) \neq 0, \ P(B) \neq 0, \ P(A) \neq 1,$ et $P(B) \neq 1.$

Montrer que si A et B sont indépendants, alors \overline{A} et B sont aussi indépendants.

Voir sujet 3