Chapitre 4 : Dérivation (2e partie)

I Rappels sur la dérivation

I.1 Nombre dérivé

Soit f une fonction définie sur un intervalle I, soit $a \in I$.

Soit $h \neq 0$. Taux d'accroissement de f	$T(h) = \frac{f(a+h) - f(a)}{h}$
entre a et $a + h$.	
Nombre dérivé de f en a :	$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$
Soit f dérivable en a . La tangente à la courbe	passant par le point $A(a; f(a))$
de f au point d'abscisse a est la droite	et de coefficient directeur $f'(a)$
Équation de la tangente au point d'abscisse a	y = f'(a)(x - a) + f(a)

I.2 Fonction dérivée

Soient a, b, c, d quatre nombres réels.

Expression de la fonction $f(x)$ sur \mathbb{R}	Expression de la dérivée $f'(x)$ sur \mathbb{R}
f(x) = a (fonction constante)	f'(x) = 0
f(x) = ax + b	f'(x) = a
$f(x) = x^2$	f'(x) = 2x
$f(x) = ax^2 + bx + c$	f'(x) = 2ax + b
$f(x) = x^3$	$f'(x) = 3x^2$
$f(x) = ax^3 + bx^2 + cx + d$	$f'(x) = 3ax^2 + 2bx + c$

Exercice 1

Déterminer l'expression de la dérivée de la fonction.

1. Pour tout $x \in \mathbb{R}$, $f(x) = -5x^2 + x - 13$.

f'(x) = -10x + 1.

- 2. Pour tout $x \in \mathbb{R}$, $g(x) = \frac{1}{3}x^3 6x^2 + 2x + 1$.
- $q'(x) = x^2 12x + 2.$

IIOpérations sur les fonctions dérivées

Théorème

Soient u et v des fonctions dérivables sur un intervalle I, soit $k \in \mathbb{R}$. Alors :

1. Somme de fonctions.

La fonction (u+v) est dérivable sur I et (u+v)'=u'+v'.

2. Produit par un nombre réel.

Soit $k \in \mathbb{R}$. La fonction $(k \times u)$ est dérivable sur I et $(k \times u)' = k \times u'$.

3. Produit de fonctions.

La fonction $(u \times v)$ est dérivable sur I et $(u \times v)' = u'v + uv'$

4. Inverse et quotient.

Si v ne s'annule pas sur I (c'est-à-dire pour tout $x \in I$, $v(x) \neq 0$), alors

— la fonction $\frac{1}{n}$ est dérivable sur I et

$$\left(\frac{1}{v}\right)' = -\frac{v'}{v^2}$$

— la fonction $\frac{u}{l}$ est dérivable sur I et

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

Démonstration (dérivée d'un produit de deux fonctions)

On suppose que u et v sont dérivables sur I.

On va montrer que $(u \times v)' = u'v + uv'$.

Soient $a \in I$, et $h \neq 0$.

$$(uv)(a+h) - (uv)(a)$$
 $u(a+h)v(a+h) - u(a)v(a)$

Solent
$$a \in I$$
, et $h \neq 0$.
$$\frac{(uv)(a+h) - (uv)(a)}{h} = \frac{u(a+h)v(a+h) - u(a)v(a)}{h}$$

$$\frac{(uv)(a+h) - (uv)(a)}{h} = \frac{u(a+h) - u(a)}{h}v(a+h) + u(a)\frac{v(a+h) - v(a)}{h}.$$

On admet le résultat suivant : toute fonction dérivable en a est continue en a.

On a alors $\lim_{h\to 0} v(a+h) = v(a)$.

Ainsi,

$$\lim_{h \to 0} \frac{(uv)(a+h) - (uv)(a)}{h} = u'(a)v(a) + u(a)v'(a)$$

Donc $(u \times v)$ est dérivable sur I, et $(u \times v)' = u'v + uv'$.

Exercice 2

Déterminer la dérivée des fonctions suivantes.

1.
$$f(x) = 8x^3 - 5x^2$$

$$f'(x) = 24x^2 - 10x$$
.

- 2. $f(x) = x^2(-2x+3)$, de deux façons différentes
 - Donc $f'(x) = -6x^2 + 6x$. a) En développant f(x), on a $f(x) = -2x^3 + 3x^2$.
 - b) D'après la dérivée d'un produit $(u \times v)' = u'v + uv'$.

$$f'(x) = 2x(-2x+3) + x^2 \times (-2) = -4x^2 + 6x - 2x^2 = -6x^2 + 6x.$$

3.
$$f(x) = \frac{1}{6x - 1}$$

$$f'(x) = -\frac{6}{(6x-1)^2}.$$

4.
$$f(x) = \frac{3x+4}{1-2x}$$

$$f'(x) = \frac{3(1-2x) - (3x+4) \times (-2)}{(1-2x)^2} = \frac{11}{(1-2x)^2}$$

III Fonction dérivée de fonctions de référence

Exercice 3

Le but de cet exercice est de déterminer la dérivée de la fonction définie par $f(x) = x^5$.

- 1. Rappeler la formule de dérivée d'un produit de deux fonctions $(u \times v)$. $(u \times v)' = u'v + uv'$
- 2. On pose $u(x) = x^3$, $v(x) = x^2$, puis $f(x) = u(x) \times v(x)$.
 - (a) On a alors $f(x) = x^3 \times x^2 = x^{3+2} = x^5$ Comme $u(x) = x^3$, on a $u'(x) = 3x^2$ Comme $v(x) = x^2$, on a v'(x) = 2x
 - (b) D'après la propriété rappelée à la question 1, $f'(x) = 3x^2 \times x^2 + x^3 \times 2x = 3x^4 + 2x^2 = 5x^4.$

Théorème

1. Fonction puissance.

Pour tout entier naturel non nul, la fonction f définie par $f(x) = x^n$ est dérivable sur \mathbb{R} et pour tout $x \in \mathbb{R}$, $f'(x) = nx^{n-1}$.

2. Fonction inverse.

La fonction inverse définie par $f(x) = \frac{1}{x}$ est dérivable sur \mathbb{R}^* et pour tout $x \neq 0$,

$$f'(x) = -\frac{1}{x^2}.$$

3. Fonctions sinus et cosinus

Les fonctions sinus et cosinus sont dérivables sur \mathbb{R} et pour tout $x \in \mathbb{R}$,

$$\sin'(x) = \cos x$$
 et $\cos'(x) = -\sin x$.

Exercice 4

Calculer la dérivée des fonctions suivantes.

1.
$$f(x) = x^7 - 5x^4 + \frac{1}{2}x$$

$$f'(x) = 7x^6 - 20x^3 + \frac{1}{2}.$$

$$2. \ f(x) = \frac{1}{x} + x^2$$

$$f'(x) = -\frac{1}{x^2} + 2x$$

3. $f(x) = 11\sin x - 2\cos x + 8x^5$

 $f'(x) = 11\cos x - 2 \times (-\sin x) + 8 \times 5x^4 = 11\cos x + 2\sin x + 40x^4.$

4.
$$f(x) = \frac{4}{x} + \frac{x}{9}$$

$$f'(x) = -\frac{4}{x^2} + \frac{1}{9}.$$

IV Fonctions composées et dérivation

Exercice 5 (composée de fonctions g(ax+b))

1. Dans chaque cas, donner l'expression de la fonction f définie par f(x) = g(ax + b).

3

(a)
$$a = 4, b = 7, \text{ et } g(x) = x^3.$$
 $f(x) = (4x + 7)^3$

(b)
$$a = -3$$
, $b = 2$, et $g(x) = \frac{1}{x}$
$$f(x) = \frac{1}{-3x + 2}$$

(c)
$$a = 2, b = -1, \text{ et } g(x) = 7\cos x.$$
 $f(x) = 7\cos(2x - 1)$

2. Inversement, reconnaître l'expression f(x) comme g(ax+b) en précisant la fonction g et les réels a et b.

(a)
$$f(x) = (-8x+1)^4$$
 $g(x) = x^4, a = -8, \text{ et } b = 1$

(b)
$$f(x) = \sin(2x - 11)$$
 $g(x) = \sin x, \ a = 2, \text{ et } b = -11$

(c)
$$f(x) = (-4x+5)^2$$
 $g(x) = x^2, a = -4 \text{ et } b = 5$

(d)
$$f(x) = \cos\left(\frac{1}{5}x + \pi\right)$$
 $g(x) = \cos x, \ a = \frac{1}{5} \text{ et } b = \pi$

Propriété (admise)

Soient a et b deux réels, et g une fonction définie et dérivable sur un intervalle J.

Soit I un intervalle tel que pour tout $x \in I$, $ax + b \in J$.

Soit f la fonction définie sur l'intervalle I par f(x) = g(ax + b).

Alors, la fonction f est dérivable sur I et pour tout $x \in I$, $f'(x) = a \times g'(ax + b)$.

Propriété (cas particulier des fonctions trigonométriques)

Soient A, ω , et φ des nombres réels (lire ω : "Omega", et φ : "Phi").

On considère les fonctions f et g définies sur \mathbb{R} par $f(t) = A\sin(\omega t + \varphi)$,

et $g(t) = A\cos(\omega t + \varphi)$.

Alors f et g sont dérivables sur \mathbb{R} et pour tout $t \in \mathbb{R}$,

 $f'(t) = A \times \omega \cos(\omega t + \varphi)$

 $g'(t) = -A \times \omega \sin(\omega t + \varphi).$

Exercice 6

Dériver les fonctions précédentes.

1. (a)
$$f(x) = (4x+7)^3$$
 $f'(x) = 4 \times 3(4x+7)^2 = 12(4x+7)^2$.

(b)
$$f(x) = \frac{1}{-3x+2}$$
 $f'(x) = -3 \times \frac{-1}{(-3x+2)^2} = \frac{3}{(-3x+2)^2}$

(c)
$$f(x) = 7\cos(2x - 1)$$
 $f'(x) = 7 \times 2 \times (-\sin(2x - 1)) = -14\sin(2x - 1).$

2. (a)
$$f(x) = (-8x+1)^4$$
 $f'(x) = -8 \times 4(-8x+1)^3 = -32(-8x+1)^3$

(b)
$$f(x) = \sin(2x - 11)$$
 $f'(x) = 2 \times \cos(2x - 11)$

(c)
$$f(x) = (-4x+5)^2$$
 $f'(x) = -4 \times 2(-4x+5) = -8(-4x+5) = 32x - 40$

(d)
$$f(x) = \cos\left(\frac{1}{5}x + \pi\right)$$
 $f'(x) = \frac{1}{5} \times (-\sin(\frac{1}{5}x + \pi)) = -\frac{1}{5}\sin(\frac{1}{5}x + \pi)$

V Approximation affine au voisinage d'un point

Rappel : Si f est dérivable en a, une équation de la tangente à \mathscr{C}_f au point (a; f(a)) est :

$$y = f'(a)(x - a) + f(a)$$

Si l'on souhaite approcher f par une fonction affine au voisinage de a, la meilleure fonction affine possible est donc $x \mapsto f(a) + f'(a)(x-a)$. D'où le résultat suivant :

Théorème

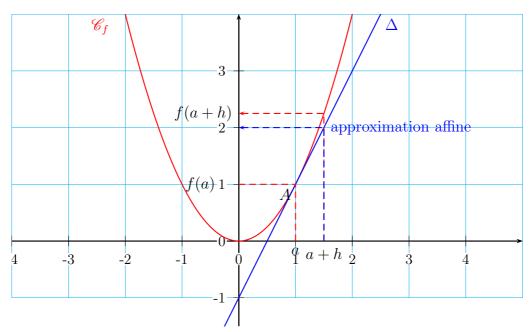
Si f est dérivable en a, alors :

$$f(x) \approx f(a) + f'(a)(x - a)$$
 pour x voisin de a,

(ou
$$x = a + h$$
) $f(a + h) \approx f(a) + f'(a)h$ pour h voisin de 0.

Illustration:

Soit f la fonction carré, et a=1. On a tracé la courbe de f, et la tangente Δ à la courbe au point A d'abscisse 1.



Exemple:

Soit f la fonction définie sur \mathbb{R} par $f(x) = 3x^2 + x$.

1. Déterminer l'approximation affine de f pour au voisinage de a=2.

Pour h proche de 0, on a donc $f(2+h) \approx f(2) + f'(2) \times h$.

$$f(2) = 3 \times 2^2 + 2 = 14.$$

Calculons aussi f'(2).

Pour tout $x \in \mathbb{R}$, f'(x) = 6x + 1. Donc $f'(2) = 6 \times 2 + 1 = 13$.

Ainsi, pour h proche de 0, $f(2+h) \approx 14+13h$.

- 2. Utiliser l'approximation affine de f pour donner une valeur approchée de f(2,001), et f(1,99). Comparer avec les valeurs exactes.
 - 2,001 = 2 + 0,001. Donc, avec h = 0,001 dans la relation qui précède,

```
f(2,001) \approx 14 + 13 \times 0,001 = 14 + 0,013 = 14,013.
Pour comparer, à la calculatrice, la valeur exacte est f(2,001) = 14,013\,003.
Pour f(1,99), on prend h = -0,01, car 1,99 = 2 - 0,01.
f(1,99) \approx 14 + 13 \times (-0,01) = 14 - 0,13 = 13,87.
Pour comparer, à la calculatrice, la valeur exacte est f(2,001) = 13,870\,3.
```

Exercice 7

Soit f la fonction carré définie sur \mathbb{R} par $f(x) = x^2$.

- 1. Déterminer l'approximation affine de f(1+h) pour h proche de 0.
- 2. En déduire sans calculatrice une valeur approchée de $1,01^2,\,1,003^2,\,$ puis $0,99^2.$

VI Dérivée et sens de variation

Théorème (rappel)

Soit f une fonction dérivable sur un intervalle I.

- 1. Si pour tout $x \in I$, $f'(x) \ge 0$, alors f est croissante sur I
- 2. Si, pour tout $x \in I$, $f'(x) \leq 0$, alors f est décroissante sur I.
- 3. Si f' est nulle sur I, alors f est constnate sur I.