Terminale STL. Spécialité. Correction du ds5

Exercice 1 (questions de cours, 2 points)

1. On pose $f(x) = e^{11x}$. Pour tout $x \in \mathbb{R}$, $f'(x) = 11e^{11x}$

2. Soit
$$k > 0$$
. $\lim_{x \to +\infty} e^{kx} = +\infty$, et $\lim_{x \to -\infty} e^{kx} = 0$

3.
$$\lim_{x \to -\infty} 3x^5 = -\infty$$
 et $\lim_{x \to +\infty} 3x^5 = +\infty$

4.
$$\lim_{x \to -\infty} -5x^4 = -\infty$$
 et $\lim_{x \to +\infty} -5x^4 = -\infty$

Exercice 2 (4 points)

1. $\lim_{x \to -\infty} -6x^3 + 5x^2 + x - 11$

La limite à l'infini d'un polynôme est celle de son terme de plus haut degré.

$$\lim_{x \to -\infty} -6x^3 + 5x^2 + x - 11 = \lim_{-\infty} -6x^3 = +\infty$$

2.
$$\lim_{x \to +\infty} -6x^3 + 5x^2 + x - 11 = \lim_{x \to +\infty} -6x^3 = -\infty$$

3.
$$\lim_{x \to -\infty} (3x+5)e^{-x}$$

 $\lim_{x \to -\infty} (3x+5) = \lim_{-\infty} 3x = -\infty$.

$$\lim_{x \to -\infty} e^{-x} = +\infty$$

Par produit,
$$\lim_{x \to -\infty} (3x + 5)e^{-x} = -\infty$$

4.
$$\lim_{\substack{x \to -\infty \\ x \to -\infty}} 3x^2 + 5 + e^{4x}$$
$$\lim_{\substack{x \to -\infty \\ x \to -\infty}} 3x^2 + 5 = \lim_{\substack{x \to -\infty \\ x \to -\infty}} 3x^2 = +\infty$$

Par somme,
$$\lim_{x \to -\infty} 3x^2 + 5 + e^{4x} = +\infty$$
.

Exercice 3 (4 points)

Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{5x+2}{2}$.

1. Calculer
$$f'(x)$$
 et montrer que $f'(x) = \frac{-10x + 1}{e^{2x}}$
On rappelle la dérivée d'un quotient $\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$.

Ici, on pose u(x) = 5x + 2, donc u'(x) = 5. Et $v(x) = e^{2x}$ donc $v'(x) = 2e^{2x}$.

$$f'(x) = \frac{5e^{2x} - (5x + 2) \times 2e^{2x}}{(e^{2x})^2}$$
$$= \frac{e^{2x}[5 - (10x + 4)]}{e^{2x} \times e^{2x}}$$
$$= \frac{-10x + 1}{e^{2x}}$$

2. Étudier le signe de f'(x) et en déduire le tableau de variation de f (sans les limites en $-\infty$ et $+\infty$).

Pour tout $x \in \mathbb{R}$, $e^{2x} > 0$. Doc f'(x) a le même signe que -10x + 1.

$$-10x + 1 > 0$$
 si $-10x > -1$ ssi $x < 0, 1$.

x	$-\infty$		0, 1		$+\infty$
f'(x)		+	0	_	
f(x)	$-\infty$	/1	$2,5e^{-0.2}$?	0

$$f(0,1) = \frac{5 \times 0, 1+2}{e^{2 \times 0,1}} = 2, 5e^{-0,2}.$$

À noter : les limites en complément (ce n'était pas dans l'interrogation)

 $\mathrm{En} + \infty$.

 $\lim 5x + 2 = +\infty$, et $\lim e^{2x} = +\infty$ (par quotient, on ne peut pas conclure, F.I.)

Par croissance comparée, $\lim_{+\infty}f=0$

 $\lim_{\stackrel{-\infty}{-\infty}} 5x + 2 = -\infty, \text{ et } \lim_{\stackrel{-\infty}{-\infty}} e^{2x} = 0 +$ Par quotient, $\lim_{\infty} f = -\infty$