Terminale STI. Spécialité. Correction du ds4. Sujet 1

Exercice 1 (questions de cours, 2 points)

1. On pose $f(x) = e^{11x}$.

Pour tout $x \in \mathbb{R}$, $f'(x) = 11e^{11x}$

2. Soit k > 0. $\lim_{x \to +\infty} e^{kx} = +\infty$, et $\lim_{x \to -\infty} e^{kx} = 0$

3. $\lim_{x \to -\infty} 3x^5 = -\infty$ et $\lim_{x \to +\infty} 3x^5 = +\infty$

4. $\lim_{x \to -\infty} -5x^4 = -\infty$ et $\lim_{x \to +\infty} -5x^4 = -\infty$

Exercice 2 (2 points)

1. $\lim_{x \to -\infty} -6x^3 + 5x^2 + x - 11$

La limite à l'infini d'un polynôme est celle de son terme de plus haut degré. $\lim_{x\to -\infty} -6x^3 + 5x^2 + x - 11 = \lim_{-\infty} -6x^3 = +\infty$

2. $\lim_{x \to +\infty} -6x^3 + 5x^2 + x - 11 = \lim_{x \to +\infty} -6x^3 = -\infty$

3. $\lim_{x \to -\infty} (3x + 5)e^{-x}$

$$\lim_{x \to -\infty} (3x + 5) = \lim_{-\infty} 3x = -\infty.$$

$$\lim_{x \to -\infty} e^{-x} = +\infty$$

Par produit,
$$\lim_{x \to -\infty} (3x + 5)e^{-x} = -\infty$$

4. $\lim_{x \to +\infty} (3x + 5)e^{-x}$

$$\lim_{x \to +\infty} (3x+5) = \lim_{+\infty} 3x = +\infty.$$

$$\lim_{x \to +\infty} e^{-x} = 0$$

On a une forme indéterminée " $0 \times \pm \infty$ ".

Par croissance comparée, l'exponentielle l'emporte, donc $\lim_{x\to -\infty} (3x+5) e^{-x} = 0$

Exercice 3 (6 points)

Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{4x+1}{e^x}$.

1. Déterminer la limite de f en $-\infty$ et en $+\infty$.

$$\lim_{x \to +\infty} 4x + 1 = \lim_{+\infty} 4x = +\infty.$$

$$\lim_{x \to +\infty} e^x = +\infty$$

Par croissance comparée, $\lim_{x \to +\infty} f(x) = 0$.

$$\lim_{x \to -\infty} 4x + 1 = \lim_{-\infty} 4x = -\infty.$$

$$\lim_{x \to -\infty} e^x = 0 +$$

Par quotient, $\lim_{x \to -\infty} f(x) = -\infty$.

2. Calculer f'(x) et montrer que $f'(x) = \frac{-4x+3}{e^x}$

On rappelle la dérivée d'un quotient $\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$. Ici, on pose u(x) = 4x + 1, donc u'(x) = 4. Et $v(x) = e^x$ donc $v'(x) = e^x$.

$$f'(x) = \frac{4e^x - (4x+1) \times e^x}{(e^x)^2}$$
$$= \frac{e^x [4 - (4x+1)]}{e^x \times e^x}$$
$$= \frac{-4x+3}{e^x}$$

3. Étudier le signe de f'(x) et en déduire le tableau de variation complet de f. Comme $e^x > 0$, f'(x) a le même signe que -4x + 3.

$$-4x + 3 = 0$$
 ssi $x = \frac{3}{4}$, et $-4x + 3 > 0$ ssi $x < \frac{3}{4}$.

$$f(x) = \frac{4x+1}{e^x}$$
, donc $f\left(\frac{3}{4}\right) = \frac{4 \times 0,75+1}{e^{3/4}} = 4e^{-3/4}$.

On ajoute aussi les limites dans la ligne de f(x) du tableau de variation.

x	$-\infty$		3/4		$+\infty$
f'(x)		+	0	_	
f(x)	$-\infty$	/	$4e^{-3/4}$		0

Quelques réponses non détaillées du sujet 2

Exercice 2 (2 points)

- 1. $\lim_{x \to -\infty} 6x^3 + 5x^2 + x 11 = -\infty$ par le terme de plus haut degré
- 2. $\lim_{x\rightarrow +\infty} 6x^3 + 5x^2 + x 11 = +\infty$ par le terme de plus haut degré
- 3. $\lim_{x \to -\infty} (-2x + 5)e^{4x} = 0$ par croissance comparée
- 4. $\lim_{x \to +\infty} (-2x+5)e^{4x} = -\infty$ par produit

Exercice 3 (6 points)

Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{5x+2}{e^{2x}}$.

$$f'(x) = \frac{-10x + 1}{e^{2x}}$$

x	$-\infty$		0,1		$+\infty$
f'(x)		+	0	_	
f(x)	$-\infty$	/1	$2,5e^{-0.2}$		0