Correction du devoir maison nº 3

Exercice 1 (46 page 57)

Le réel x appartient à l'intervalle $]-\pi;0[$ et vérifie $\cos(x)=\frac{\sqrt{3}}{\pi}.$ Déterminons $\sin x$.

Pour tout $x \in \mathbb{R}$, $\cos^2 x + \sin^2 x = 1$.

Donc
$$\sin^2 x = 1 - \cos^2 x = 1 - \left(\frac{\sqrt{3}}{5}\right)^2 = 1 - \frac{3}{25} = \frac{22}{25}$$
.

Ainsi,
$$\sin x = \sqrt{\frac{22}{25}} = \frac{\sqrt{22}}{5}$$
 ou bien $\sin x = -\sqrt{\frac{22}{25}} = -\frac{\sqrt{22}}{5}$.

Comme $x \in]-\pi; 0[$, on a $\sin x < 0$.

Finalement,
$$\sin x = -\frac{\sqrt{22}}{5}$$
.

Exercice 2 (53 page 58)

On donne $\cos(x) = 0.8 \text{ et } \sin(x) = -0.6.$

D'après les propriétés sur les angles associés, on a :

$$\cos(-x) = \cos x = 0, 8.$$

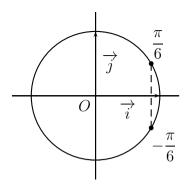
$$\sin(-x) = -\sin x = 0, 6.$$

$$\cos(\pi - x) = -\cos x = -0.8.$$

$$\sin(\pi - x) = \sin x = -0, 6.$$

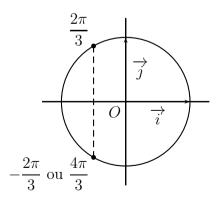
$$\cos(\pi + x) = -\cos x = -0, 8.$$

$$\sin(\pi + x) = -\sin x = 0, 6.$$


$$\cos\left(\frac{\pi}{2} - x\right) = \sin x = -0, 6.$$

$$\sin\left(\frac{\pi}{2} - x\right) = \cos x = 0, 8.$$

$$\cos\left(\frac{\pi}{2} + x\right) = -\sin x = 0, 6.$$


$$\sin\left(\frac{\pi}{2} + x\right) = \cos x = 0, 8.$$

Exercice 3 (60 page 58)
1.
$$\cos x = \frac{\sqrt{3}}{2} \text{ dans }] - \pi; \pi].$$

Dans $]-\pi;\pi]$, les solutions sont $-\frac{\pi}{6}$ et $\frac{\pi}{6}$.

- 2. $\cos(x) = \cos(\frac{\pi}{8}) \text{ dans }] \pi; \pi].$ Donc $x = \frac{\pi}{8} + k \times 2\pi$, ou $x = -\frac{\pi}{8} + k \times 2\pi$, avec $k \in \mathbb{Z}$. Dans l'intervalle $]-\pi;\pi]$, les solutions sont $-\frac{\pi}{8}$ et $\frac{\pi}{8}$.
- 3. $\sin t = 1, 4 \text{ avec } t \in [0; 2\pi].$ On sait que pour tout $t \in \mathbb{R}$, $-1 \leq \sin t \leq 1$. Comme 1, 4 > 1, cette équation n'a pas de solution.
- 4. $\cos x = -\frac{1}{2}$, avec $x \in [0; 2\pi]$.

$$x = \frac{2\pi}{3} + k \times 2\pi$$
 ou $x = -\frac{2\pi}{3} + k \times 2\pi$, avec $k \in \mathbb{Z}$.
Dans l'intervalle $[0; 2\pi[$, les solutions sont $\frac{2\pi}{3}$ et $\frac{4\pi}{3}$.