Correction du contrôle n° 3

Exercice 1 (6 points)

- 1. Soit f la fonction définie sur $\left| -\frac{1}{3}; +\infty \right|$ par $f(x) = \frac{1}{3x+1}$.
 - (a) Donner un primitive de f sur l'intervalle $\left] -\frac{1}{3}; +\infty \right[$. Sur $\left|-\frac{1}{3};+\infty\right|$, la fonction f est clairement continue et u(x)=

 $f(x) = \frac{1}{3} \times \frac{3}{3x+1} = \frac{1}{3} \frac{u'(x)}{u(x)}.$

La fonction F définie par $F(x) = \frac{1}{3}\ln(3x+1)$ est une primitive de f sur cet intervalle.

(b) En déduire la primitive de f qui s'annule en 1. Les primitives de f sont de la forme $G(x) = \frac{1}{3}\ln(3x+1) + k$, avec $k \in \mathbb{R}$.

$$G(1) = 0$$

$$\frac{1}{3}\ln(3\times1+1) + k = 0$$

$$k = -\frac{\ln 4}{3}$$

La primitive de f qui s'annule en 1 a pour expression G(x) = $\frac{1}{3}\ln(3x+1) - \frac{\ln 4}{3}$.

2. (a) Vérifier que la fonction F définie par $F(x) = x \ln x - x$ est une primitive de la fonction ln sur $]0; +\infty[$. Les fonctions $x \mapsto x$ et ln sont dérivables sur $]0; +\infty[$.

Par produit et somme, F est dérivable sur $]0; +\infty[$.

Soit x > 0,

$$F'(x) = 1 \ln x + x \times \frac{1}{x} - 1$$
$$= \ln x$$

F est une primitive de la fonction ln sur $]0; +\infty[$.

(b) En déduire la valeur exacte de $\int_{1}^{e} (\ln x) dx$.

$$\int_{1}^{e} (\ln x) dx = F(e) - F(1)$$

$$= (e \ln(e) - e) - (1 \ln(1) - 1)$$

$$= (e - e) - (0 - 1)$$

$$= 1$$

3. Soit f la fonction définie sur [1; 2] par $f(x) = \frac{1}{x^3}$. Déterminer la valeur movenne de f sur [1; 2].

$$m = \frac{1}{2-1} \int_{1}^{2} \frac{1}{x^{3}} dx$$

$$= \left[-\frac{1}{2} x^{-2} \right]_{1}^{2}$$

$$= -\frac{1}{2 \times 2^{2}} + \frac{1}{2 \times 1^{2}}$$

$$= -\frac{1}{8} + \frac{4}{8}$$

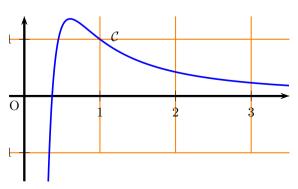
$$= \frac{3}{8}$$

Exercice 2 (14 points)

Soit f la fonction définie sur l'intervalle $[0; +\infty[$ par

$$f(x) = \frac{1 + \ln(x)}{x^2}$$

et soit \mathcal{C} la courbe représentative de la fonction f dans un repère du plan. La courbe C est donnée ci-dessous :



1. (a) Étudions la limite de f en 0.

On sait que $\lim_{x\to 0} \ln(x) = -\infty$ donc $\lim_{x\to 0} 1 + \ln(x) = -\infty$.

D'autre part $\lim_{x\to 0} \frac{1}{x^2} = +\infty$, alors par produit des limites, $\lim_{x\to 0} f(x) = -\infty$

(b) On sait que $\lim_{x \to +\infty} \frac{\ln x}{x} = 0$,

D'autre part $\lim_{x \to +\infty} \frac{1}{x} = 0$, alors par produit des limites

$$\lim_{x \to +\infty} \frac{\ln x}{x^2} = 0,$$

On a aussi $\lim_{x\to +\infty} \frac{1}{x^2} = 0$, et en ajoutant ces deux dernières limites, on obtient :

$$\lim_{x \to +\infty} f(x) = 0$$

(c) $\lim_{x\to 0} f(x) = -\infty$ prouve que l'axe des ordonnées (x=0) est asymptote verticale.

 $\lim_{x\to +\infty} f(x)=0 \text{ que l'axe des abscisses } (y=0) \text{ est asymptote horizontale à \mathcal{C} en } +\infty.$

2. (a) On note f' la fonction dérivée de la fonction f sur l'intervalle]0 ; $+\infty[$.

f est dérivable sur]0; $+\infty[$,

$$f'(x) = \frac{\frac{1}{x} \times x^2 - (1 + \ln x) \times 2x}{x^4} = \frac{-x - 2x \ln x}{x^4} = \frac{-1 - 2\ln(x)}{x^3}.$$

(b) $-1 - 2 \ln x > 0 \iff \ln x < -\frac{1}{2} \iff x < e^{-\frac{1}{2}}.$

Pour tout $x \in]0$; $+\infty[$, $x^3 > 0$ et f'(x) est du signe de $-1 - 2\ln(x)$.

(c) Dresser le tableau des variations de la fonction f.

On a
$$f\left(e^{-\frac{1}{2}}\right) = \frac{1 - \frac{1}{2}}{\left(e^{-\frac{1}{2}}\right)^2} = \frac{\frac{1}{2}}{e^{-1}} = \frac{e}{2}$$

		\ /							
x	0				$\frac{1}{\sqrt{e}}$			+0	Ø
f'(x)			+		0		_		
f(x)				<i></i>	<u>e</u> 2	\	\	\	0

- 3. (a) On a : $f(x) = 0 \iff 1 + \ln x = 0 \iff \ln x = -1 \iff x = \mathrm{e}^{-1}$ Ce qui prouve que la courbe $\mathcal C$ coupe l'axe des abscisses en un unique point, le point de coordonnées ($\mathrm{e}^{-1};0$)
 - (b) D'après le tableau des variations de f et sachant que $f(e^{-1}) = 0$. On en déduit que f(x) > 0 sur l'intervalle $]e^{-1}$; $+\infty[$ et f(x) < 0 sur l'intervalle]0; $e^{-1}[$.
- 4. Pour tout entier $n \ge 1$, on note I_n l'aire, exprimée en unités d'aires, du domaine délimité par l'axe des abscisses, la courbe \mathcal{C} et les droites d'équations respectives $x = \frac{1}{e}$ et x = n.
 - (a) On sait que f > 0 sur $]e^{-1}$; $+\infty[$, donc $I_n = \int_{e^{-1}}^n f(x) dx$ Sur $\left[\frac{1}{e}; 2\right]$ on a au vu des variations de $f: 0 < f(x) \leqslant \frac{e}{2}$. Comme l'intégration conserve l'ordre et le signe, on en déduit : $0 \leqslant I_2 \leqslant \int_{e^{-1}}^2 \frac{e}{2} dx = \frac{e}{2} \left(2 - \frac{1}{e}\right) = e - \frac{1}{2}$ et finalement : $0 \leqslant I_2 \leqslant e - \frac{1}{2}$.
 - (b) On dérive la fonction F, définie sur l'intervalle]0; $+\infty[$ par $F(x)=\frac{-2-\ln(x)}{x}$. $F'(x)=\frac{-\frac{1}{x}\times x-(-2-\ln x)\times 1}{x^2}=\frac{-1+2+\ln x}{x^2}=\frac{1+\ln x}{x^2}=f(x).$ F est bien une primitive de f sur $]0;+\infty[$.

r est bien une primitive de j sur jo, +

(c) Calculons I_n en fonction de n. On a :

$$I_n = \left[\frac{-2 - \ln x}{x}\right]_{e^{-1}}^n = \frac{-2 - \ln n}{n} - \left(\frac{-2 - \ln(e^{-1})}{e^{-1}}\right) = \frac{-2 - \ln n}{n} - (-2 + 1)e$$

Et finalement : $I_n = \frac{-2 - \ln n}{n} + e = e - \frac{\ln n}{n} - \frac{2}{n}$

(d) Étudions la limite de I_n en $+\infty$.

On a $\lim_{n \to +\infty} \frac{\ln n}{n} = 0$, $\lim_{n \to +\infty} \frac{1}{n} = 0$ et $\lim_{n \to +\infty} \frac{2}{n} = 0$ alors $\lim_{n \to +\infty} I_n = 0$ e.

Graphiquement cela signifie que l'aire du domaine délimité par l'axe des abscisses, la courbe $\mathcal C$ et les droites d'équations respectives $x=\frac{1}{\mathrm e}$ et x=n tend vers e quand n tend vers $+\infty$.