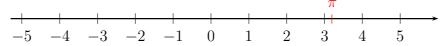
Chapitre 2 : Généralités sur les fonctions. Fonctions affines

I Intervalles de \mathbb{R}

On peut représenter l'ensemble \mathbb{R} des nombres réels par une droite graduée.

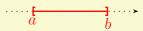
À chaque nombre réel correspond un unique point sur la droite, et réciproquement à chaque point de la droite correspond un unique nombre réel, appelé abscisse de ce point.



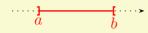
Définition (Intervalles bornés)

Soient a et b deux nombres réels, avec a < b.

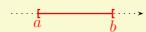
L'intervalle fermé [a;b] est l'ensemble des réels x tels que $a \leq x \leq b$.



L'intervalle ouvert a; b est l'ensemble des réels x tels que a < x < b.



L'intervalle [a; b[(fermé en a, ouvert en b) est l'ensemble des réels x tels que $a \le x < b$.



L'intervalle [a; b] (ouvert en a, fermé en b) est l'ensemble des réels x tels que $a < x \le b$.

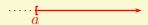
Remarque

Le symbole mathématique pour l'infini est ∞ .

Définition (Intervalles non bornés)

Soit $a \in \mathbb{R}$.

L'intervalle fermé $[a; +\infty[$ est l'ensemble des réels x tels que $x \ge a$.



L'intervalle ouvert $a; +\infty$ est l'ensemble des réels x tels que x > a.

L'intervalle fermé $]-\infty;a]$ est l'ensemble des réels x tels que $x\leqslant a$.

L'intervalle ouvert $]-\infty; a[$ est l'ensemble des réels x tels que x < a.

Remarque

On ouvre toujours les crochets pour $+\infty$ et $-\infty$. \mathbb{R} est un intervalle, il s'écrit $\mathbb{R} =]-\infty; +\infty[$.

Exemple:

Inégalité	Intervalle	Représentation sur la droite graduée
$-3 \leqslant x \leqslant 2$	[-3; 2]	-3 2
$-5 \leqslant x < 3$	[-5; 3[-5 3
x < 2	$]-\infty;2[$	2 ····>
$x \geqslant -5$	$[-5;+\infty[$	-5

Exercice 1 Compléter le tableau

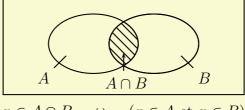
Inégalité	Intervalle	Représentation sur la droite graduée
]-1;4]	······>
-4 < x < 7		
		—————————————————————————————————————

I.1 Intersection et réunion de deux ensembles

Définition

1. Intersection de deux ensembles.

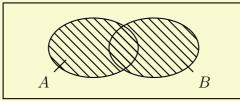
L'intersection de deux ensembles est l'ensemble des éléments communs aux deux ensembles.



$$x \in A \cap B \quad \Leftrightarrow \quad (x \in A \text{ et } x \in B)$$

2. Réunion de deux ensembles.

La réunion de deux ensembles est l'ensemble des éléments appartenant à au moins l'un des deux ensembles.



 $A \cup B$ est la partie hachurée.

 $x \in A \cup B \quad \Leftrightarrow \quad (x \in A \text{ ou } x \in B)$

Remarque

Notations particulières :

On note \mathbb{R}^* l'ensemble des réels non nuls : $\mathbb{R}^* =]-\infty; 0[\cup]0; +\infty[$.

On note aussi $\mathbb{R}_+ = [0; +\infty[$ pour les réels positifs, et $\mathbb{R}_- =]-\infty; 0]$ pour les réels négatifs.

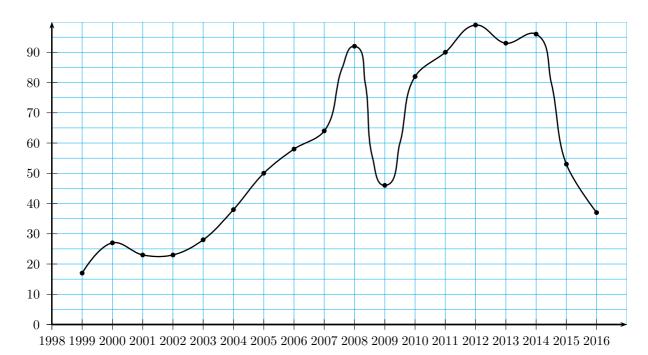
Exercice 2

Dans chaque cas, représenter I et J, puis simplifier, si possible, $I \cap J$ et $I \cup J$.

- 1. I = [-2; 1] et J =]0; 3[.
- 2. I = [1; 2] et J = [-2, 5[.
- 3. I = [-1; 1] et J = [4; 5].

II Notion de fonction

Le graphique suivant représente l'évolution du prix du baril de pétrole, exprimé en dollars, de début 1999 à début 2016.



- 1. Combien coûtait approximativement un baril de pétrole au début de l'année 1999? Et début 2011?
- 2. D'après le graphique, entre 1999 et 2016, combien de fois le baril de pétrole a-t-il coûté 60 dollars?
- 3. D'après le graphique, entre 1999 et 2016, combien de fois le baril de pétrole a-t-il coûté 30 dollars?
- 4. Quand le baril de pétrole a-t-il atteint son maximum entre 2002 et 2009? Quel était ce maximum?
- 5. Comment a évolué le prix du baril de pétrole entre 2002 et 2008?
- 6. Parmi les deux phrases suivantes, une seule est vraie. Laquelle?
 - « À chaque date entre 1999 et 2016, il correspond un unique prix pour le baril de pétrole ».
 - « À chaque valeur entre 18 et 99 dollars pour le prix du baril de pétrole, il correspond une unique date entre 1999 et 2016 ».

1/	000	hii	O 1PO	
V	oca	Du.	laire	

Le graphique montre que lorsque l'année (le temps) varie, le prix du baril de pétrole évolue.

Le	dépend du	
On dit que le temps est la	· · · · · · · · · · · · · · · · · · ·	_
Sur le graphique, on lit ses valeurs en	n	
Le prix du baril de pétrole est	du temps.	
On lit ses valeurs en	<u> </u>	

II.1 Définition

Définition

Soit D une partie de \mathbb{R} .

Définir une fonction f de D dans \mathbb{R} , c'est associer à tout nombre x appartenant à D un unique nombre réel f(x).

Vocabulaire : On dit que

- x est la variable de f,
- D est l'ensemble de définition de f (souvent noté D_f),
- f(x) est l'image de x par f.

On note parfois $f: D \to \mathbb{R}$ $x \mapsto f(x)$.

Exemple:

Posons $f(x) = 2x^2 - 1$.

L'image de 0 par f est $f(0) = 2 \times 0^2 - 1 = -1$.

Pour calculer l'image d'une nombre par une fonction, on remplace x par ce nombre dans l'expression de f.

Définition

Soit f une fonction définie sur D. Soit y un nombre réel.

On appelle antécédent de y par f tout nombre x de D tel que f(x) = y.

Exemple:

Considérons la fonction carré, $f(x) = x^2$.

— On cherche les antécédents de 9 par f.

Un antécédent de 9 est un nombre x tel que f(x) = 9.

L'équation $x^2 = 9$ donne x = 3 ou x = -3.

Ainsi, le nombre 9 a deux antécédents qui sont 3 et -3.

— Rechercher les antécédents de -2 par f.

Ce sont les nombres x tels que $x^2 = -2$.

Cette équation n'a pas de solution (un carré est toujours positif).

Donc -2 n'a pas d'antécédent par f.

Remarque

Un nombre peut avoir 0 antécédent, ou un antécédent, ou plusieurs!

Par contre, tout nombre x de D admet une unique image f(x).

II.2 Représentation graphique d'une fonction

Pour étudier une fonction f, il est intéressant de pouvoir lire à la fois le nombre x et son image f(x).

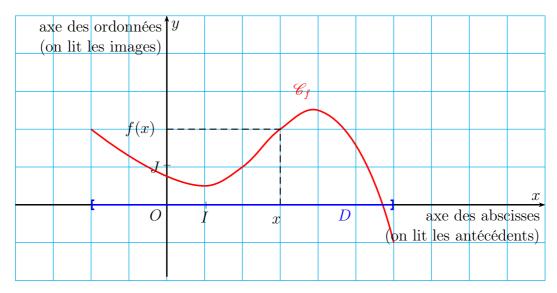
Définition

Soit f une fonction définie sur une partie D de \mathbb{R} .

Dans un repère du plan, la courbe représentative de f est l'ensemble des points M(x; f(x)) avec $x \in D_f$.

Autrement dit, $M(x; y) \in \mathcal{C}_f$ si et seulement si $(x \in D \text{ et } y = f(x))$.

On dit que \mathscr{C}_f a pour équation y = f(x).



Sur cet exemple, l'ensemble de définition de f est D = [-2; 6]. On remarque que la courbe passe par le point A(3; 2), donc f(3) = 2.

Remarque

Pour une valeur de la variable x donnée, il n'y a qu'une seule image f(x). Par conséquent la courbe d'une fonction ne peut avoir qu'un point d'abscisse donnée.

Exercice 3 (calcul mental)

Soit f la fonction définie sur \mathbb{R} par f(x) = -3x + 4.

- 1. L'image de -1 est Donc le point de coordonnées (...;...) appartient à la courbe de f.
- $2. f\left(\frac{1}{2}\right) = \dots$
- 3. 10 admet pour antécédent le réel ... car ...
- 4. La courbe représentative de f passe par A(0;...), B(2;...) et C(...;-8).

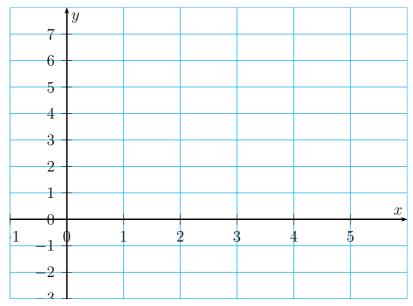
Exercice 4 (tableau de valeurs, tracé de courbe)

Soit f la fonction définie sur [0;5] par $f(x) = (x-3)^2 - 2$.

1. Tableau de valeurs : Compléter le tableau.

x	0	0,5	1	1,5	2	2,5	3	3,5	4	4,5	5
f(x)											

2. Dans un repère orthogonal, construire la courbe représentative de f sur [0; 5].



III Résolutions graphiques d'équations

III.1 Équation f(x) = k

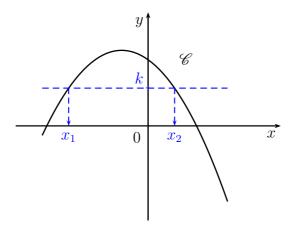
Propriété

Soit f une fonction définie sur une partie D de \mathbb{R} .

Notons $\mathscr C$ sa courbe représentative dans un repère du plan.

Soit k un nombre réel.

Les solutions de l'équation f(x) = k sont les abscisses des points de la courbe $\mathscr C$ qui ont une ordonnée égale à k.



Remarque

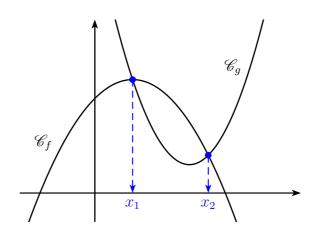
Résoudre graphiquement l'équation f(x) = k revient à déterminer graphiquement les antécédents de k par f.

III.2 Équation f(x) = g(x)

Propriété

Soient f et g deux fonctions définies sur une partie D de \mathbb{R} .

Notons respectivement \mathscr{C}_f et \mathscr{C}_g leurs courbes représentatives dans un repère du plan. Les solutions de l'équation f(x) = g(x) sont les abscisses des points d'intersection de \mathscr{C}_f et \mathscr{C}_g .



IV Fonctions affines

Définition

Une fonction f est affine s'il existe deux nombres réels a et b tels que pour tout x réel f(x) = ax + b.

On peut toujours définir une fonction affine sur \mathbb{R} .

Exemple : la fonction f donnée par f(x) = 2x + 3.

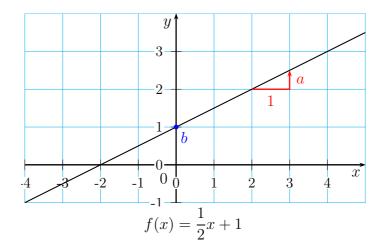
Théorème (admis)

La représentation graphique d'une fonction affine est une droite non parallèle à l'axe des ordonnées.

Vocabulaire:

Soit f définie par f(x) = ax + b.

- Le réel a est le <u>coefficient directeur</u> de la droite représentant f. Il donne l'inclinaison de la droite : « quand on avance de 1, on "monte" de a ».
- le réel b est <u>l'ordonnée à l'origine</u> de la droite : La droite coupe <u>l'axe</u> des orconnées en le point de coordonnées (0;b).



Méthode pour tracer la représentation graphique d'une fonction affine :

Comme c'est une droite, il suffit de construire deux points.

- On choisit deux valeurs de x, (qui donnent des calculs simples si possible)
- on calcule les images correspondantes,
- on place les points obtenus, et on trace la droite les reliant.

Exercice 5

Tracer la courbe de la fonction définie par $f(x) = -\frac{2}{5}x + 3$.

\boldsymbol{x}	0	5		
y				

Remarque (cas particuliers)

- Lorsque a = 0, pour tout $x \in \mathbb{R}$, f(x) = b. La fonction est dite constante. La courbe de f est alors un droite parallèle à l'axe des abscisses.
- Lorsque b = 0, pour tout $x \in \mathbb{R}$, f(x) = ax. La fonction est dite linéaire. La courbe de f est une droite passant par O.

8

Propriété

Soit f la fonction affine définie sur \mathbb{R} par f(x) = ax + b, avec a et b réels.

Pour tous nombres réels distincts u et v,

$$\frac{f(v) - f(u)}{v - u} = a.$$

Démonstration

Soient u et v deux réels distincts.

$$\frac{f(v) - f(u)}{v - u} = \frac{av + b - (au + b)}{v - u} = \frac{av - au}{v - u} = \frac{a(v - u)}{v - u} = a.$$

Remarque

De façon générale, le nombre $\frac{f(v) - f(u)}{v - u}$ est le taux d'accroissement de la fonction f entre les réels u et v.

Pour une fonction affine, le taux d'accroissement est constant et toujours égal au coefficient directeur a.

Théorème (admis, variation des fonctions affines)

Soit f la fonction affine définie sur \mathbb{R} par f(x) = ax + b, avec a et b réels.

- 1. f est strictement croissante sur \mathbb{R} ssi a > 0.
- 2. f est strictement décroissante sur \mathbb{R} ssi a < 0.
- 3. f est constante sur \mathbb{R} ssi a=0. Dans ce cas, \mathscr{C}_f est une droite parallèle à l'axe des abscisses.

Méthode pour déterminer l'expression d'une fonction affine f dont on connaît la représentation graphique :

- Repérer deux points $A(x_A; y_A)$ et $B(x_B; y_B)$ sur \mathscr{C}_f .
- Le coefficient directeur est $a = \frac{y_B y_A}{x_B x_A}$.
- Alors, f(x) = ax + b, et a est connu. On trouve b en remplaçant les coordonnées d'un des points A ou B dans la relation précédente.

Exercice 6

Dans chaque cas, déterminer l'expression de la fonction affine f.

- 1. f(2) = 5 et f(3) = 1.
- 2. La courbe de f passe par A(-2;3) et B(1;4).

Propriété (équation du premier degré)

Soient a et b deux réels, avec $a \neq 0$.

$$ax + b = 0 \text{ ssi } x = -\frac{b}{a}.$$

Démonstration

On suppose que $a \neq 0$.

$$ax + b = 0$$
 ssi $ax + b - b = 0 - b$ ssi $ax = -b$ ssi $\frac{ax}{a} = -\frac{b}{a}$ ssi $x = -\frac{b}{a}$.